
The Developer’s Guide to Gutenprint

The Gutenprint Project

The Developer’s Guide to Gutenprint
by The Gutenprint Project
Published 7th Nov, 2003
Copyright © 2003 The Gutenprint Project

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, see
https://www.gnu.org/licenses/.

Table of Contents
Preface .. v
1. Copying, modification and redistribution ...1
2. Using libgutenprint..3

Code prerequisites ...3
Linking with libgutenprint ...3
Integrating libgutenprint ..3

pkg-config..3
make ...4
autoconf ...4
automake ...4

3. Reporting Bugs..7
4. Adding a new printer...9

printers.xml...9
The driver file..10

Epson inkjet printers ..10
Tuning the printer...14
Canon inkjet printers..16

5. ESC/P2...19
Standard commands ..19
Remote Mode Commands ..24
Appropriate Remote Commands...31

6. Weaving for inkjet printers...33
Introduction ..33
Weaving algorithms ...34

Simple weaving algorithms ..35
Perfect weaving...36
Weaving collisions ..38
What makes a “perfect” weave?...39
Oversampling..46

7. Dithering ..51
A. GNU General Public License ..59

Preamble ..59
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION ..59
Section 0 ...59
Section 1 ...60
Section 2 ...60
Section 3 ...61
Section 4 ...61
Section 5 ...61
Section 6 ...61
Section 7 ...62
Section 8 ...62
Section 9 ...62
Section 10 ...62
NO WARRANTY..63
Section 12 ...63

iii

iv

Preface

Gutenprint is the print facility of the GNU Image Manipulation Program (GIMP). It
is in addition a suite of drivers that may be used with CUPS. These drivers provide
printing quality for Linux, MacOS X and UNIX on a par with proprietary vendor-
supplied drivers in many cases, and can be used for many of the most demanding
printing tasks, especially for high quality printing on modern inkjets, including “pho-
tographic quality” models which offer very high resolutions and several inks. The
core of Gutenprint is a shared library (libgutenprint) which may be used by any pro-
gram that wishes to produce high-quality printed output.

This manual documents the use of the Gutenprint package, focusing mainly on the
libgutenprint library that is the core of Gutenprint. Parts of the manual which de-
scribe the use of libgutenprint are aimed primarily at programmers, and do assume
that the reader is familiar with C programming, and using standard programming
tools on GNU or UNIX systems.

For the end-user, there is a separate manual documenting programs that come with
Gutenprint, including the GIMP print plugin, and the CUPS driver.

To learn how to use libgutenprint in your own programs is to look at the source of the
testpattern, located in src/testpattern, as well as the source of the other programs
that use libgutenprint, and libgutenprint itself. Most importantly, please consult the
API reference and libgutenprint headers.

The manual is split into several parts for the programmer. It starts with a simple
usage example of how to link a program with libgutenprint, then how to integrate
this into package build scripts, using make, autoconf and automake. The appendices
cover the detail of the inner workings of some parts of libgutenprint.

The following sections detail the dither and weave algorithms used in libgutenprint,
the ESC/P2 printer control language used in Epson printers and how to add support
for a new printer to libgutenprint.

We hope you enjoy using Gutenprint!
—The Gutenprint project

v

Preface

vi

Chapter 1. Copying, modification and redistribution

Gutenprint is free; this means that everyone is free to use it and free to redistribute
it on a free basis. Gutenprint is not in the public domain; it is copyrighted and there
are restrictions on its distribution, but these restrictions are designed to permit ev-
erything that a good cooperating citizen would want to do. What is not allowed is to
try to prevent others from further sharing any version of Gutenprint that they might
get from you.

Specifically, we want to make sure that you have the right to give away copies of
Gutenprint, that you receive source code or else can get it if you want it, that you can
change Gutenprint or use pieces of it in new free programs, and that you know you
can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of Gutenprint, you must
give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code, and you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for Gutenprint. If Gutenprint is modified by someone else and passed
on, we want their recipients to know that what they have is not what we distributed,
so that any problems introduced by others will no reflect on our reputation.

Gutenprint is licensed under the terms of the GNU General Public License (GPL),
reproduced in Appendix A.

1

Chapter 1. Copying, modification and redistribution

2

Chapter 2. Using libgutenprint

This chapter describes how to write programs that use libgutenprint.

Code prerequisites
To use libgutenprint with a program, several steps must be taken:

• Include the master libgutenprint header:

<gimp-print/gimp-print.h>

• Call stp_init.

• Link with the libgutenprint library.

The following is a short example program. It does not do anything useful, but it
does everything required to link with libgutenprint and call other functions from
libgutenprint.

#include <gimp-print/gimp-print.h>
int
main (int argc, char *argv[])
{
stp_init();
return 0;

}

Linking with libgutenprint
To link a program with libgutenprint, the option -lgutenprint needs to be passed
to the compiler when linking. For example, to compile and link stpimage.c the fol-
lowing commands would be used:

$ gcc -c stpimage.c
$ gcc -o stpimage -lgutenprint stpimage.o

The compiler and linker flags needed may vary depending on the options Gutenprint
was configured with when it was built. The pkg-config script will give the correct
parameters for the local installation.

Integrating libgutenprint
This section describes how to integrate the compiling and linking of programs using
libgutenprint with build scripts. Commonly used systems include make, but often
Makefile files are generated by using tools such as autoconf and automake.

pkg-config
Depending on the nature of the computer system Gutenprint was installed on, as
well as the options passed to configure when configuring the package when it was
built, the CFLAGS and LIBS parameters needed to compile and link programs with
libgutenprint may vary. To make it simple to determine what these are on any given
system, a pkg-config datafile was created when Gutenprint was built. pkg-config

3

Chapter 2. Using libgutenprint

will output the correct parameters for the setup on your system. See the pkg-config(1)
manual page for a compete synopsis.

The correct CFLAGS to use can be obtained with the --cflags option:

$ pkg-config --cflags gutenprint
-I/usr/local/include

The correct LIBS to use can the obtained with the --libs option:

$ pkg-config --libs gutenprint
-L/usr/local/lib -lgutenprint -lm -ldl

Lastly, the installed version of Gutenprint can be obtained with the --version op-
tion:

$ pkg-config --modversion gutenprint
4.3.23

The command can be used from the shell by enclosing it in backquotes ‘‘’:

$ gcc ‘pkg-config --cflags gutenprint‘ -c stpimage.c
$ gcc ‘pkg-config --libs gutenprint‘ -o

stpimage stpimage.o

However, this is not the way it it typically used. Normally it is used in a Makefile or
by an m4 macro in a configure script.

make
If you use make with your own Makefile files, then you are on your own. This
manual offers no assistance with doing this. Only the following suggestion is offered,
for use with GNU make:

GUTENPRINT_VERSION = $(shell pkg-config --version gutenprint)
GUTENPRINT_CFLAGS = $(shell pkg-config --cflags gutenprint)
GUTENPRINT_LIBS = $(shell pkg-config --libs gutenprint)

How you choose to use these variables is entirely up to you. See the GNU make
manual for more information.

autoconf
The autoconf program produces a Bourne shell script called configure from a tem-
plate file called configure.ac. configure.ac contains both Bourne shell script, and
m4 macros. autoconf expands the m4 macros into ‘real’ shell script. The resulting
configure script performs various checks for installed programs, compiler character-
istics and other system information such as available headers and libraries. See the
GNU autoconf manual for more information.

pkg-config provides an m4 macro, PKG_CHECK_MODULES, suitable for use in a
configure.ac script. It defines the environment variables required for building
libgutenprint-based programs. For example, to set GUTENPRINT_CFLAGS and
GUTENPRINT_LIBS:

PKG_CHECK_MODULES(GUTENPRINT, gutenprint)

4

Chapter 2. Using libgutenprint

automake
The automake program can be used to generate Makefile.in files suitable for
use with a configure script generated by autoconf. As automake requires
autoconf, this section will assume the use of a configure.ac script which uses the
PKG_CHECK_MODULES macro described above (there is little point in not using it!).

It is highly recommended that you use GNU autoconf and automake. They will al-
low you to make your software build on most platforms with most compilers. au-
tomake makes writing complex Makefile’s very easy, by expressing how to build
your packages in terms of what files are required to build a project and the installa-
tion locations of the files. It imposes a few limitations over using plain Makefile’s,
such as in the use of conditionals, but these problems are vastly outweighed by the
benefits it brings. It also creates many extra targets in the generated Makefile.in
files such as dist, distcheck, clean, distclean, maintainer-clean and tags, and
there are many more more available. See the GNU automake manual for more infor-
mation.

Because PKG_CHECK_MODULES calls AC_SUBST to substitute GUTENPRINT_CFLAGS
and GUTENPRINT_LIBS, automake will automatically set these variables in the
Makefile.in files it generates, requiring no additional effort on your part!

As in previous examples, we will make a program stpimage from stpimage.c. This
is how one might build write a Makefile.am to do this:

@SET_MAKE@

AM_CFLAGS = $(GUTENPRINT_CFLAGS)

bin_PROGRAMS = stpimage
stpimage_SOURCES = stpimage.c
stpimage_LDADD = $(GUTENPRINT_LIBS)

MAINTAINERCLEANFILES = Makefile.in

That’s all there is to it! Please note that this example also requires the macro
AC_PROG_MAKE_SET to be used in configure.ac.

5

Chapter 2. Using libgutenprint

6

Chapter 3. Reporting Bugs

If you find a bug in Gutenprint or have any suggestions for modification or im-
provement, please send electronic mail to the Gutenprint bug reporting address,
<gimp-print-devel@lists.sourceforge.net>. Please include the version num-
ber, which you can find at the bottom of each manual page. Also include in your
message the output that the program produced and the output you expected, if ap-
plicable, otherwise the best description of the problem that you can provide.

If you have other questions, comments or suggestions about Gutenprint,
contact the developers via electronic mail to the Gutenprint mailing list
<gimp-print-devel@lists.sourceforge.net>. They will try to help you out,
although they may not have time to fix your problems.

7

Chapter 3. Reporting Bugs

8

Chapter 4. Adding a new printer

This chapter covers adding a new ESCP/2, PCL, or Canon printer. Writing a new
driver module is not covered.

The three steps to adding a printer are:

1. Add an entry to printers.xml.

2. Add the appropriate code and data to the appropriate driver module.

3. Tune the printer.

Printer information is stored in two places: in printers.xml (which contains the list
of printer models available to the the upper-level application), and in the appropriate
driver file (print-escp2.c, print-pcl.c, or print-canon.c).

printers.xml

printers.xml is an XML file that contains very simple printer definitions. A schema
may be used to validate the XML (src/main/gutenprint.xsd). This is an example
definition:

<printer name="EPSON Stylus Color 1500" driver="escp2-1500">
<color value="true"/>
<model value="2"/>
<gamma value="0.597"/>
<density value="1.0"/>
</printer>

There are other tags that may be present. The only ones that are mandatory are
<printer>, <color> and <model>. The other optional parameters (<gamma> and
<density> in this case) can be used to adjust control settings. This is probably
not the right place for them; the printer drivers themselves should contain this
information. There’s probably no good reason for anything but gamma and density
to be in here. Gamma refers to the printer’s gamma factor; density is the desired
base ink density for the printer. The Epson driver contains the density information
for each printer at each resolution internally. An even better driver would adjust
density and possibly even gamma for paper type. All the more reason not to have
that information here.

If you really are curious about what tags are permitted, please see the schema. These
are the definitions of the tags that do matter:

printdef XML elements

<family>

This defines what driver module this printer uses. The attribute name is the name
of the family driver to associate the printers with, for example escp2, pcl, canon,
ps or raw. This tag may only contain <printer> elements.

<printer>

This starts the definition of a printer. It must contain the attributes name and
driver. name should be is the full name of the printer, and must be human read-
able. driver should consist of alphanumerics and hyphens, and be fairly short.
name is what will appear in the user-visible listing of printers, and may be trans-
lated into the user’s language, while driver is what is actually used to key into
the list of printers. It is legal to have multiple printers with the same driver name.

9

Chapter 4. Adding a new printer

<color>

This tag may not contain any content, but the value attribute may be set to true
or false. This indicates that this printer is capable of color, or is not capable of
color respectively.

<model>

This defines a model number. This tag may not contain any content, but the
value attribute may be set to a positive integer. This is passed into the driver,
which may do whatever it cares to with it—index into a table, compute on, or
whatever. This need not be unique.

The driver file
Adding a new printer to a driver module print-canon.c, print-escp2.c,
print-lexmark.c, or print-pcl.c or (print-ps.c is really ad hoc) requires a
bit more planning. Each driver is somewhat different, but they all generally have
a vector of printer definitions, and the code does some special casing based on
particular printer capabilities. The PCL and Canon drivers are quite similar; the
Canon driver was actually cribbed from the PCL driver, but it then returned the
favor.

The Epson driver is a little bit different. Canon and PCL printers have some amount
of intelligence; a lot of them have specific ink options, and know about specific paper
sizes and types, and must be told the right thing. Epson printers have somewhat less
intelligence and will more or less do exactly what the host tells it to do in a fairly
regular fashion. I actually prefer this; it isn’t materially more work for the host to
compute things like exact paper sizes and such, it allows a lot more tweaking, and
it may be why Epson has been more open with information—the communication
protocol doesn’t really contain very much IP, so they have less reason to keep it secret.

The sections about PCL and Canon printers need completing.

Epson inkjet printers
The model_capabilities vector in print-escp2.c contains one entry for each de-
fined printer model. The model parameter in printers.xml is an index into this ta-
ble.

In general, the new printers have fewer eccentricities than the older printers. That
doesn’t mean they’re simpler, just that they’re more consistent.

escp2_printer_t is a C struct defined as follows:

typedef struct escp2_printer
{
model_cap_t flags; /* Bitmask of flags, see below */
/***/
int nozzles; /* Number of nozzles per color */
int min_nozzles; /* Minimum number of nozzles per color */
int nozzle_separation; /* Separation between rows, in 1/360" */
int black_nozzles; /* Number of black nozzles (may be extra) */
int min_black_nozzles; /* # of black nozzles (may be extra) */
int black_nozzle_separation; /* Separation between rows */
/***/
int xres; /* Normal distance between dots in */

/* softweave mode (inverse inches) */
int enhanced_xres; /* Distance between dots in highest */

/* quality modes */
int base_separation; /* Basic unit of row separation */
int base_resolution; /* Base hardware spacing (above this */

/* always requires multiple passes) */

10

Chapter 4. Adding a new printer

int enhanced_resolution;/* Above this we use the */
/* enhanced_xres rather than xres */

int resolution_scale; /* Scaling factor for ESC(D command */
int max_black_resolution; /* Above this resolution, we */

/* must use color parameters */
/* rather than (faster) black */
/* only parameters*/

int max_hres;
int max_vres;
int min_hres;
int min_vres;
/***/
int max_paper_width; /* Maximum paper width, in points */
int max_paper_height; /* Maximum paper height, in points */
int min_paper_width; /* Maximum paper width, in points */
int min_paper_height; /* Maximum paper height, in points */

/* Softweave: */
int left_margin; /* Left margin, points */
int right_margin; /* Right margin, points */
int top_margin; /* Absolute top margin, points */
int bottom_margin; /* Absolute bottom margin, points */

/* "Micro"weave: */
int m_left_margin; /* Left margin, points */
int m_right_margin; /* Right margin, points */
int m_top_margin; /* Absolute top margin, points */
int m_bottom_margin; /* Absolute bottom margin, points */
/***/
int extra_feed; /* Extra distance the paper can be spaced */

/* beyond the bottom margin, in 1/360". */
/* (maximum useful value is */
/* nozzles * nozzle_separation) */

int separation_rows; /* Some printers require funky spacing */
/* arguments in microweave mode. */

int pseudo_separation_rows;/* Some printers require funky */
/* spacing arguments in softweave mode */

int zero_margin_offset; /* Offset to use to achieve */
/* zero-margin printing */

/***/
/* The stylus 480 and 580 have an unusual arrangement of

color jets that need special handling */
const int *head_offset;
int initial_vertical_offset;
int black_initial_vertical_offset;

/***/
const int *dot_sizes; /* Vector of dot sizes for resolutions */
const double *densities; /* List of densities for each printer */
const escp2_variable_inklist_t *inks; /* Choices of inks for this printer */
/***/
const double *lum_adjustment;
const double *hue_adjustment;
const double *sat_adjustment;
const paperlist_t *paperlist;
} escp2_printer_t;

The printer definition block is divided into 8 sections. The first section is a set of mis-
cellaneous printer options. These are described in the code, and will not be discussed
further here.

The second section describes the number of nozzles and the separation between noz-
zles in base units. The base unit is 1/360" for all currently supported printers, but
future printers may support a smaller base unit.

Many printers have more black nozzles than nozzles of other colors, and when used
in black and white mode, it’s possible to use these extra nozzles, which speeds up

11

Chapter 4. Adding a new printer

printing. As an example, a printer that is specified to have 48 cyan, magenta, and
yellow nozzles, and 144 black nozzles, can use all 144 black nozzles when printing
black ink only. When printing in color, only 48 nozzles of each color (including black)
can be used.

Most printers can print using either the number of nozzles available or any smaller
number. Some printers require that all of the nozzles be used. Those printers will
set min_nozzles and/or min_black_nozzles to the same value as nozzles and/or
black_nozzles.

The third section defines basic units of measure for the printer, including the stan-
dard separation between dots, the base nozzle separation, and the minimum and
maximum printing resolutions the printer supports. Most of these are fairly self-
explanatory, but some are not obvious.

Most Epson printers, other than the high-end Stylus Pro models, cannot print dots
spaced more closely than 1/360" or 1/720" apart (this is the setting for xres. This is
true even for printers that support resolutions of 1440 or 2880 DPI. In these cases, the
data must be printed in 2, 4, or 8 passes. While the printer can position the head to a
resolution of 1/1440" or 1/2880", the head cannot deposit ink that frequently.

Some printers can only print in their very best quality (using the smallest dots avail-
able) printing at a lower resolution. For example, the Stylus Photo EX can normally
print with a dot spacing of 1/720". The smallest dot size cannot be printed with a dot
spacing of less than 1/360", however. In this case, we use enhanced_xres to spec-
ify the resolution to be used in this enhanced mode, and enhanced_resolution to
specify the printing resolution above which we use the enhanced_xres.

The resolution_scale command is used to specify scaling factors for the dot sepa-
ration on newer printers. It should always be 14400 with current printers.

The fourth section specifies the minimum and maximum paper sizes, and the mar-
gins. Some printers allow use of narrower margins when softweave is used; both sets
of margins are specified.

There is a convenient INCH macro defined to make specification of the
max_paper_width and max_paper_height more legible. It multiplies 72 by the
provided expression to get the appropriate number of points. For example, to
specify 8.5", INCH(17/2) expands to (72 * 17/2), which is evaluated left to right,
and hence generates the correct value.

The fifth section specifies some miscellaneous values that are required for certain
printers. For most printers, the correct values are 1 for separation_rows and 0 for
the others. Very, very few printers require (or allow) separation_rows to be any-
thing but 1 and pseudo_separation_rows other than 0. The Stylus Color 1520, Sty-
lus Color 800, Stylus Color 850, and (strangely enough to my mind, since it’s a newer
printer) Stylus Color 660 seem to be the only exceptions.

zero_margin_offset is used to specify an additional negative horizontal offset re-
quired to print to the edges of the paper on newer Stylus Photo printers. These must
be determined empirically; good starting values are 100 for 1440 DPI and 50 for 2880
DPI printers. The goal is to print to the edge of the page, but not over it.

The sixth section specifies head offsets for printers that do not have the color jets
aligned. Certain printers, such as the Stylus Color 480, have an unusual head ar-
rangement whereby instead of all of the colors being aligned vertically, the nozzles
are configured in groups. These printers are easy to determine; if the normal head
offset of zero for each color is used, the printing will be vertically out of alignment.
Most of these printers require specification of a negative offset for printing to the top
edge of the paper; typically these printers do not require such an offset when printing
black only.

The seventh section specifies the most difficult values to tune, the dot sizes, print-
ing densities, and ink values (for variable dot size enabled printers). These will be
described in detail below.

12

Chapter 4. Adding a new printer

The last section specifies luminosity, hue, and saturation adjustment vectors for the
printer, and the paper definitions. These are used to adjust the color in Photograph
and Solid Colors output modes. These are each vectors of 48 (actually 49, as the first
value must be duplicated) doubles that remap the luminosity, hue, and saturation
respectively. The hue is calculated, and the value used to interpolate between the
two closest points in each vector.

The paper definitions is a set of paper definitions. The paper definition contains the
name of the paper type, special settings that are required for printers to process the
paper correctly, and a set of adjustment values. These are not currently discussed
here.

The lists of dot sizes and densities contain values for 13 printing modes: 120/180
DPI using printer weaving (single row; incorrectly referred to as “microweave”)
and “soft” weaving (the driver determines the exact pattern of dot layout), 360
DPI microweave and softweave, 720×360 DPI microweave and softweave, 720
DPI microweave and softweave, 1440×720 microweave and softweave, 2880×720
microweave and softweave, and 2880×1440 softweave only. Printer weaving is
referred to as “microweave” for historical reasons.

For the dot sizes, the value for each element in the vector selects the dot size to be
used when printing at this (or similar) resolution. The dot sizes are determined by
consulting the programming manual for the printer and experimenting as described
below. Current Epson printers always use dot sizes less than 16 (0x10), to indicate
single dot size (each dot is represented by 1 bit, and it’s either printed or not), and
dot sizes of 16 or greater to indicate variable dot size (each dot is represented by 2
bits, and it can either be not printed or take on 2 or 3 values, representing the relative
size of the printed dot). Variable dot sizes permit the use of very small dots (which
would be too small to fill the page and produce solid black) in light areas, while
allowing the page to be filled with larger dots in darker areas.

Even single dot size printers can usually produce dots of different sizes; it’s just illegal
to actually try to switch dot size during a page. These dots are also much bigger than
those used in true variable dot size printing.

A dot size of -1 indicates that this resolution is illegal for the printer in question. Any
resolutions that would use this dot size will not be presented to the user. A dot size
of -2 indicates that this resolution is legal, but that the driver is not to attempt to set
any dot size. Some very old printers do not support the command to set the dot size.

Most printers support a dot size of 0 as a mode-specific default, but it’s often a bigger
dot than necessary. Printers usually also support some dot sizes between 1 and 3.
Usually 1 is the right dot size for 720 and 1440 DPI printing, and 3 works best at 360
DPI.

Variable dot size printers usually support 2 or 3 sets of variable dot sizes. Older
printers based on a 6 picolitre drop (the 480, 720, 740, 750, 900, and 1200) support
two: mode 16 (0x10 in hexadecimal) for normal variable dots at 1440 or 720 DPI, and
mode 17 (0x10) for special larger dots at 360 DPI. Newer printers based on 4 picol-
itre drops normally support three sizes: 0x10 for 4 pl base drops, 0x11 for 6 pl base
drops, and 0x12 for special large drops. On these printers, 0x10 usually works best
at 1440×720 and 0x11 works best at 720×720. Unfortunately, 0x10 doesn’t seem to
generate quite enough density at 720×720, because if it did the output would be very
smooth. Perhaps it’s possible to tweak things. . .

The list of densities is a list of base density values for all of the above listed modes.
“Density” refers to the amount of ink deposited when a solid color (or solid black) is
printed. So if the density is 0.5, solid black actually prints only half the possible dots.
“Base density” refers to the fact that the density value can be scaled in the GUI or via
CUPS options. The density value specified (which is not made visible to the user) is
multiplied by the base density to obtain the effective density value. All other things
(such as ink drop size) remaining the same, doubling the resolution requires halving
the base density. The base density in the density vector may exceed 1, as many paper

13

Chapter 4. Adding a new printer

types require lower density than the base driver. The driver ensures that the actual
density never exceeds 1.

Tuning the density should be done on high quality paper (usually glossy photo pa-
per). The goal is to find the lowest density value that results in solid black (no visible
gaps under a fairly high power magnifying glass or loupe). If an appropriate density
value is found for 720 DPI, it could be divided by 2 for 1440×720, by 4 for 2880×720,
and by 8 for 2880×1440.

However, for printers that offer a choice of dot size, this may not be the best strategy.
The best choice for dot size is the smallest dot size that allows choosing a density
value not greater than 1 that gives full coverage. This dot size may be different for
different resolutions. Tuning variable dot size printers is more complicated; the pro-
cess is described below.

The last member is a pointer to a structure containing a list of ink values for variable
dot size (or 6 color) inks. We model variable dot size inks as producing a certain
“value” of ink for each available dot size, where the largest dot size has a value of 1.
6-color inks are handled similarly; the light cyan and light magenta inks are treated
as a fractional ink value. The combination of variable dot size and 6 color inks, of
course, just creates that many more different ink choices.

This structure is actually rather complicated; it contains entries for each combination
of physical printer resolution (180, 360, 720, and 1440 DPI), ink colors (4, 6, and 7), and
single and variable dot sizes (since some printer modes can’t handle variable dot size
inks). Since there’s so much data, it’s actually a somewhat deeply nested structure.

• An escp2_printer_t contains a pointer (essentially, a reference rather than a copy)
to an escp2_variable_inklist_t.

• An escp2_variable_inklist_t contains pointers to escp2_variable_inkset_t
structures. There is one such pointer for each combination of resolution, dot type,
and ink colors as described above. Yes, this is rather inflexible.

• An escp2_variable_inkset_t contains pointers to escp2_variable_ink_t structures.
There is one such pointer for each of the four colors (C, M, Y, and K).

• An escp2_variable_ink_t contains a pointer to the actual list of ink values
(simple_dither_range_t), the number of ink values, and a density value to be
used for computing the transitions. This density value is actually a scaling value;
it is multiplied by the effective density to compute the density to be used for
computing the transitions. Normally, this value is 1, but in some cases it may be
possible to get smoother results with a different value (in particular, the single
dot size 6-color inks work best with the effective density scaled to .75 for this
purpose). A lower density lowers the transition points, which results in more ink
being deposited.

• A simple_dither_range_t is a structure containing four values:

• The value of the particular ink

• The bit pattern used to represent the ink

• Whether the ink is light (0) or dark (1), for inks with light and dark variants

• The relative amount of ink actually deposited by this dot (not currently used for
much; it can be used for ink reduction purposes, to reduce the amount of ink
deposited on the paper).

These things are interesting as arrays. From an array of simple_dither_range_t’s,
the dither code computes transition values that it looks up at run time to decide
what ink to print, as well as whether to print at all.

Really confused now? Yup. You’ll probably find it easier to simply read the code.

14

Chapter 4. Adding a new printer

Tuning the printer
Now, how do you use all this to tune a printer? There are a number of ways to do it;
this one is my personal favorite.

There’s a file named test/cyan-sweep.tif. This consists of a thin bar of cyan
sweeping from white to almost pure cyan, and from pure cyan to black. The first
thing to do is to pick the appropriate simple_dither_range_t (or create a whole
new escp2_variable_inklist_t) and comment out all but the darkest ink (this means
you’ll be using the largest dots of dark ink). At 8.5" width (the width of a letter-size
piece of paper), the bar will be 1/8" high. Printing it on wider or narrower paper
will change the height accordingly. Print it width-wise across a piece of photo
quality paper in line art mode using ordered or adaptive hybrid dither. Do not use
photographic mode; the colors in photographic mode vary non-linearly depending
upon the presence of the three color components, while in line art mode the colors
are much purer. Make sure that all the color adjustments are set to defaults (1.0). Use
the highest quality version of the print mode you’re testing to reduce banding and
other artifacts. This is much easier to do with the Gimp than with CUPS.

At this stage, you want to look for four things:

1. The black near the center of the line is solid, but not more so than that.

2. The cyan immediately to the left of the black is almost solid.

3. The dark cyan at the far right of the page is solid, but not more so. You can try
tuning the density so that it isn’t quite solid, then nudging up the density until
it is.

4. Both sweeps sweep smoothly from light to dark. In particular, the dark half
of the bar shouldn’t visibly change color; it should go smoothly from cyan to
black.

Repeat this stage until you have everything just right. Use the positioning entry boxes
in the dialog to position each bar exactly 1/8" further down the page. Adjacent bars
will be touching.

The next step is to uncomment out the second darkest dot size. If you’re using vari-
able dots, use the second largest dot size of the dark ink rather than the largest dot
size of the light ink. This will give you two inks.

When you recompile the plugin, you simply need to copy the new executable into
the correct place. You do not need to exit and restart the Gimp.

Print another bar adjacent to the first one. Your goal is to match the bar using a single
dot size as closely as possible. You’ll find that the dark region of the bar shouldn’t
change to any great degree, but the light half probably will. If the lighter part of the
light half is too dark, you need to increase the value of the smaller dot; if it’s too light,
you need to decrease the value. The reasoning is that if the value is too low, the ink
isn’t being given enough credit for its contribution to the darkness of the ink, and
vice versa. Repeat until you have a good match. Make sure you let the ink dry fully,
which will take a few minutes. Wet ink will look too dark. Don’t look at the paper too
closely; hold it at a distance. The extra graininess of the largest dot size will probably
make it look lighter than it should; if you hold it far enough away so that you can’t
see the dots, you’ll get a more accurate picture of what’s going on.

After you have what looks like a good match, print another bar using only the largest
dot size (or dark ink, for single dot size 6-color printers). You want to ensure that the
bars touching each other look identical, or as close as possible to it; your eye won’t
give you a good reading if the bars are separated from each other. You’ll probably
have to repeat the procedure.

The next step is to comment out all but the largest and third-largest dot size, and
repeat the procedure. When they match, use all three dot sizes of dark ink. Again, the
goal is to match the single dot size.

15

Chapter 4. Adding a new printer

You’ll probably find the match is imperfect. Now you have to figure out what region
isn’t right, which takes some experimentation. Even small adjustments can make a
noticeable difference in what you see. At this stage, it’s very important to hold the
page far enough from your eye; when you use all three dot sizes, the texture will be
much more even, which sometimes makes it look darker and sometimes lighter.

After this is calibrated, it’s time to calibrate the light ink against the dark ink. To do
this, comment out all but the large dot version of the two inks, and repeat the proce-
dure. This is trickier, because the hues of the inks might not be quite identical. Look
at the dark half of the bar as well as the light half to see that the hue really doesn’t
change as you sweep from cyan to black. Sometimes it’s easier to judge that way. You
may find that it looks blotchy, in which case you should switch from ordered dither
to adaptive hybrid.

After you have the light and dark inks calibrated against each other, it’s time to add
everything back in. Usually you don’t want to use the largest dot size of light ink.
These dots will be much larger than the small dots of dark ink, but they’ll still be
lighter. This will cause problems when printing mixed colors, since you’ll be deposit-
ing more ink on lighter regions of the page, and you’ll probably get strange color
casts that you can’t get rid of in neutral tones. I normally use only the smallest one or
two dot sizes of light ink.

After you’ve tweaked everything, print the color bar with saturation set to zero. This
will print neutral tones using color inks. Your goal here is to look for neutral tonality.
If you’re using a 6-color printer and get a yellow cast, it means that the values for
your light inks are too high (remember, that means they’re getting too much credit,
so you’re not depositing enough cyan and magenta ink, and the yellow dominates).
If you get a bluish or bluish-purple cast, your light inks are too low (you’re not giving
them enough credit, so too much cyan and magenta is deposited, which overwhelms
the yellow). Make sure you do this on very white, very high grade inkjet paper that’s
designed for 1440×720 DPI or higher; otherwise the ink will spread on contact and
you’ll get values that aren’t really true for high grade paper. You can, of course, cali-
brate for low grade paper if that’s what you’re going to use, but that shouldn’t be put
into the distribution.

You can also fully desaturate this bar inside the Gimp and print it as monochrome
(don’t print the cyan as monochrome; the driver does funny things with luminance),
for comparison. You’ll find it very hard to get rid of all color casts.

There are other ways of tuning printers, but this one works pretty well for me.

Canon inkjet printers
Basically, a new Canon printer can be added to print-canon.c in a similar way as
described above for the epson inkjet printers. The main differences are noted here.

In general, Canon printers have more “built-in intelligence“ than Epson printers
which results in the fact that the driver only has to tell the printing conditions like
resolutions, dot sizes, etc. to the printer and afterwards transfer the raster data line
by line for each color used.

canon_cap_t is a C struct defined as follows:

typedef struct canon_caps {
int model; /* model number as used in printers.xml */
int max_width; /* maximum printable paper size */
int max_height;
int base_res; /* base resolution - shall be 150 or 180 */
int max_xdpi; /* maximum horizontal resolution */
int max_ydpi; /* maximum vertical resolution */
int max_quality;
int border_left; /* left margin, points */
int border_right; /* right margin, points */

16

Chapter 4. Adding a new printer

int border_top; /* absolute top margin, points */
int border_bottom; /* absolute bottom margin, points */
int inks; /* installable cartridges (CANON_INK_*) */
int slots; /* available paperslots */
int features; /* special bjl settings */
canon_dot_size_t dot_sizes; /* Vector of dot sizes for resolutions */
canon_densities_t densities; /* List of densities for each printer */
canon_variable_inklist_t *inxs; /* Choices of inks for this printer */
} canon_cap_t;

Since there are Canon printers which print in resolutions of 2n × 150 DPI (e.g. 300,
600, 1200) and others which support resolutions of 2n × 180 DPI (e.g. 360, 720, 1440),
there’s a base resolution (150 or 180, respectively) given in the canon_cap_t. The
structs canon_dot_size_t, canon_densities_t and canon_variable_inklist_t refer to res-
olutions being multiples of the base resolution.

For the Canon driver, the struct canon_dot_size_t holds values for a model’s capabil-
ities at a given resolution, or -1 if the resolution is not supported. 0 if it can be used
and 1 if the resolution can be used for variable dot size printing.

In canon_densities_t the base densities for each resolution can be specified like for an
epson printer. The same holds true for canon_variable_inklist_t. See the descriptions
above to learn about how to adjust your model’s output to yield nice results.

There’s a slight difference though in the way the Canon driver and the escp2 driver
define their variable inklists: In the Canon driver, you need to define an inklist like
this:

static const canon_variable_inklist_t canon_ink_myinks[] =
{
{
1,4, /* 1bit/pixel, 4 colors */
&ci_CMYK_1, &ci_CMYK_1, &ci_CMYK_1,
&ci_CMYK_1, &ci_CMYK_1, &ci_CMYK_1,

},
{
3,4, /* 3bit/pixel, 4 colors */
&ci_CMYK_3, &ci_CMYK_3, &ci_CMYK_3,
&ci_CMYK_3, &ci_CMYK_3, &ci_CMYK_3,

},
};

where the &ci_CMYK_1 and &ci_CMYK_3 entries are references to a previously defined
const of type canon_variable_inkset_t.

17

Chapter 4. Adding a new printer

18

Chapter 5. ESC/P2

This is a description of the ESC/P2 raster commands used by the Gutenprint printer
driver, which is a subset of the complete command set. Note that these are not always
correct, and are certainly not complete.

All ESCP/2 raster commands begin with the ESC character (0x1b), followed by either
one or two command characters and arguments where applicable. Older commands
generally have one command character. Newer commands usually have a ‘(’ (left
parenthesis) followed by a command character and a byte count for the arguments
that follow. The byte count is a 16-bit (2 byte) binary integer, in little endian order.

All arguments listed here are of the form name[bytes] where [bytes] is the num-
ber of bytes that comprise the argument. The arguments themselves are usually one,
two, or four byte integers, always little endian (the least significant bits come first).
Presumably this is to match Intel processors.

In some cases, the same command sequence identifies different versions of the same
command, depending upon the number of bytes of arguments.

Standard commands

ESC/P2 Commands

ESC @

Reset the printer. Discards any output, ejects the existing page, returns all set-
tings to their default. Always use this before printing a page.

ESC (G BC=1 ON1

Turn on graphics mode. ON should be 1 (turn on graphics mode).

ESC (U BC=1 UNIT1

Set basic unit of measurement used by printer. This is expressed in multiples of
1/3600". At 720 DPI, UNIT is 5; at 360 DPI, UNIT is 10.

ESC (U BC=5 PAGEUNITS1 VUNIT1 HUNIT1 BASEUNIT2

Set basic units of measurement used by the printer. PAGEUNIT is the unit of page
measurement (for commands that set page dimensions and the like). VUNIT is
the unit of vertical measurement (for vertical movement commands). HUNIT is
the unit of horizontal movement (for horizontal positioning commands). All of
these units are expressed in BASEUNIT, which is in reciprocal inches. Typically,
BASEUNIT is 1440. In 720 DPI mode, PAGEUNIT, VUNIT, and HUNIT are all 2; in
1440×720 DPI mode, PAGEUNIT and VUNIT are normally set to 2; HUNIT is set to
1.

ESC (K BC=2 ZERO1 GRAYMODE1

Set color or grayscale mode, on printers supporting an explicit grayscale mode.
These printers can be identified because they are advertised as having more
black nozzles than nozzles of individual colors. Setting grayscale mode allows
use of these extra nozzles for faster printing. GRAYMODE should be 0 or 2 for color,
1 for grayscale. ZERO should always be 0.

ESC (i BC=1 INTERLEAVE1

If INTERLEAVE is 1, use printer interleave mode (referred to by Epson as "Mi-
croWeave". On older printers, this is used to turn on printer interleave; on newer
printers, it prints one row at a time. All printers support this mode. It should

19

Chapter 5. ESC/P2

only be used at 720 (or 1440×720) DPI. The Epson Stylus Pro series indicates
additional modes (with additional optionss on newer ones):

2

“Full-overlap”

3

“Four-pass”

4

“Full-overlap 2”

Any of these commands can be used with the high four bits set to either 3 or 0.

ESC U DIRECTION1

If DIRECTION is 1, print unidirectionally; if 0, print bidirectionally.

ESC (s BC=1 SPEED1

On some older printers, this controls the print head speed. SPEED of 2 is 10
inches/sec; SPEED of 0 or 1 is 20.

ESC (e BC=2 ZERO1 DOTSIZE1

Choose print dotsize. DOTSIZE can take on various values, depending upon the
printer. Almost all printers support 0 and 2. Variable dot size printers allow a
value of 16. Other than the value of 16, this appears to be ignored at resolutions
of 720 DPI and above.

ESC (C BC=2 PAGELENGTH2

ESC (C BC=4 PAGELENGTH4

Set the length of the page in “pageunits” (see ESC (U above). The second form
of the command allows setting of longer page lengths on new printers (these
happen to be the printers that support variable dot size).

ESC (c BC=4 TOP2 LENGTH2

ESC (c BC=8 TOP4 LENGTH4

Set the vertical page margins of the page in “pageunits” (see ESC (U above).
The margins are specified as the top of the page and the length of the page.
The second form of the command allows setting of longer page lengths on new
printers (these happen to be the printers that support variable dot size).

ESC (S BC=8 WIDTH4 LENGTH4

Set the width and length of the printed page region in “pageunits” (see ESC (U
above).

ESC (v BC=2 ADVANCE2

ESC (v BC=4 ADVANCE4

Feed vertically ADVANCE “vertical units” (see ESC (U above) from the current
print head position.

ESC (V BC=2 ADVANCE2

ESC (V BC=4 ADVANCE4

Feed vertically ADVANCE “vertical units” (see ESC (U above) from the top margin.

20

Chapter 5. ESC/P2

ESC ($ BC=4 OFFSET4

Set horizontal position to OFFSET from the left margin. This command operates
on printers of the 740 class and newer (all printers with variable dot size).

ESC $ OFFSET2

Set horizontal position to OFFSET from the left margin. This command operates
on printers of the 740 class and newer (all printers with variable dot size).

ESC (\ BC=4 UNITS2 OFFSET2

Set horizontal position to OFFSET from the previous print head position, mea-
sured in UNITS. UNITS is measured in inverse inches, and should be set to 1440
in all cases. This operates on all 1440 dpi printers that do not support variable
dot size.

ESC (/ BC=4 OFFSET4

Set horizontal position to OFFSET from the previous print head position, mea-
sured in “horizontal units” (see ESC (U above). This operates on all variable dot
size printers.

ESC \ OFFSET2

Set horizontal position to OFFSET from the previous print head position, mea-
sured in basic unit of measurement (see ESC (U above). This is used on all 720
dpi printers, and can also be used on 1440 dpi printers in lower resolutions to
save a few bytes. Note that OFFSET may be negative. The range of values for this
command is between -16384 and 16383.

ESC r COLOR1

ESC (r BC=2 DENSITY1 COLOR1

Set the ink color. The first form is used on four-color printers; the second on
six-color printers. DENSITY is 0 for dark inks, 1 for light. COLOR is

Table 5-1. Colors

COLOR Color name

0 Black

1 Magenta

2 Cyan

4 Yellow

This command is not used on variable dot size printers in softweave mode.

ESC . COMPRESS1 VSEP1 HSEP1 LINES1 WIDTH2 data...

Print data. COMPRESS signifies the compression mode.

Table 5-2. Compression modes

COMPRESS Compression mode

0 No compression

1 TIFF compression (incorrectly
documented as “run length encoded”)

2 TIFF compression with a special
command set.

21

Chapter 5. ESC/P2

VSEP depends upon resolution and printer type. At 360 DPI, it is always 10.
At 720 DPI, it is normally 55. On the ESC 600, it is 40 (8 × 5}). On some other
printers, it varies.

HSEP1 is 10 at 360 DPI and 5 at 720 or 1440 DPI (1440 DPI cannot be printed
in one pass; it is printed in two passes, with the dots separated in each pass by
1/720").

LINES is the number of lines to be printed. It should be 1 in printer interleave and
360 DPI. At 720 DPI softweave, it should be the number of lines to be actually
printed.

WIDTH is the number of pixels to be printed in each row. Following this com-
mand, a carriage return (13 decimal, 0A hex) should be output to return the print
head position to the left margin.

The basic data format is a string of bytes, with data from left to right on the page.
Within each byte, the highest bit is first.

The TIFF compression is implemented as one count byte followed by one or
more data bytes. There are two cases:

1. If the count byte is 128 or less, it is followed by ([count] + 1) data bytes. So
if the count byte is 0, it is followed by 1 data byte; if it is 128, it is followed
by 129 data bytes.

2. If the count byte is greater than 128, it is followed by one byte. This byte is
repeated (257 - [count]) times. So if [count] is 129, the next byte is treated as
though it were repeated 128 times; if [count] is 255, it is treated as though
it were repeated twice.

ESC i COLOR1 COMPRESS1 BITS1 BYTES2 LINES2 data...

Print data in the newer printers (that support variable dot size), and Stylus Pro
models. COLOR is the color.

Table 5-3. Extended Colors

COLOR Color name

0 Black

1 Magenta

2 Cyan

4 Yellow

5 Alternate black (Stylus C70/C80)

6 Alternate black (Stylus C70/C80)

16 Gray (“light black”)

17 Light magenta

18 Light cyan

COMPRESS signifies the compression mode:

Table 5-4. Compression modes

COMPRESS Compression mode

0 No compression

1 TIFF compression (incorrectly
documented as “run length encoded”)

22

Chapter 5. ESC/P2

COMPRESS Compression mode
2 TIFF compression with a special

command set, or “run length
encoding 2” on some printers.

BITS is the number of bits per pixel.

BYTES is the number of bytes wide for each row (ceiling(BITS × width_of_row,
8)}). Note that this is different from the ESC . command above.

LINES is the number of lines to be printed. This command is the only way to get
variable dot size printing. In variable dot mode, the size of the dots increases as
the value (1, 2, or 3) increases.

ESC (D BC=4 BASE2 VERTICAL1 HORIZONTAL1

Set printer horizontal and vertical spacing. It only applies to variable dot size
printers in softweave mode (and possibly other high end printers).

BASE is the base unit for this command; it must be 14400.

VERTICAL is the distance in these units between printed rows; it should be ((sep-
aration_in_nozzles × BASE ÷ 720).

HORIZONTAL is the horizontal separation between dots in a row. Depending upon
the printer, this should be either (14400 ÷ 720) or (14400 ÷ 360). The Stylus Pro
9000 manual suggests that the settings should match the chosen resolution, but
that is apparently not the case (or not always the case) on other printers.

ESC (g BC=4 CUTPOS

Only seen on roll-only printers like the SureLab D700, this tells the printer where
to actuate the cutter, eject the page, and cease printing.

CUTPOS The row number at which to actuate the cutter. It is
resolution-indepenent, specified in 1/2880 in. units.

ESC (g BC=8 00 R E M O T E 1

Enters “remote mode”. This is a special, undocumented command set that is
used to set up various printer options, such as paper feed tray, and perform
utility functions such as head cleaning and alignment. It does not appear that
anything here is actually required to make the printer print. Our best under-
standing of what is in a remote command sequence is described in a separate
section below.

ESC 01 @EJL [sp] ID\r\n

Return the printer ID. This is considered a remote mode command, although the
syntax is that of a conventional command. This returns the following informa-
tion:

@EJL ID\r
MFG:EPSON;
CMD:ESCPL2,BDC;
MDL:[printer model];
CLS:PRINTER;
DES:EPSON [printer model];
\f

After all data has been sent, a form feed byte should be sent.

All newer Epson printers (STC 440, STP 750) require the following command to
be sent at least once to enable printing at all. This command specifically takes the
printer out of the 1284.4 packet mode communication protocol and enables normal

23

Chapter 5. ESC/P2

data transfer. Sending it multiple times is is not harmful, so it is normally sent at the
beginning of each job:

ESC 01@EJL[space]1284.4[newline]@EJL[space][space][space][space]
[space][newline]ESC@

The proper sequence of initialization commands is:

magic command
ESC @
remote mode if needed
ESC (G
ESC (U
ESC (K (if appropriate)
ESC (i
ESC U (if needed)
ESC (s (if appropriate)
ESC (e
ESC (C
ESC (c
ESC (S
ESC (D (if needed)
ESC (V (optional -- this can be accomplished with ESC (v)

For printing, the proper sequence is:

ESC (v

and repeat for each color:

ESC ($ or ESC (\ or ESC \
ESC (r or ESC r (if needed---not used with "ESC i" and not needed if the color
has not changed from the previous printed line)
ESC . or ESC i ...data... [return] (0A hex)

To terminate a page:

[formfeed] (0C hex)
ESC @

Remote Mode Commands
The following description of remote commands comes out of an examination of the
sequences used by the printer utilities bundled with the Windows drivers for the
ESC740, and from other sources (some Epson manuals, experimentation, analysis of
print files). It is largely speculative as these commands are not all documented in the
Epson documentation we have access to. Generally, newer manuals provide more
thorough documentation.

Remote command mode is entered when the printer is sent the following sequence:

ESC (R BC=8 00 R E M O T E 1

Remote mode commands are then sent, and terminated with the following sequence:

ESC 00 00 00

All remote mode commands must be sent before the initial ESC (G command is sent.

24

Chapter 5. ESC/P2

This introductory sequence is then followed by a sequence of commands. Each com-
mand is constructed as follows:

1. Two ASCII bytes indicating the function

2. A byte count (two bytes, little-endian) for the parameters

3. Binary parameters, if any

This is a list of all remote commands we have seen:

ESC/P2 Remote Mode Commands

NC BC=2 00 00

Print a nozzle check pattern.

VI BC=2 00 00

On my 740, prints the following, probably “version information”:

W01286 I02382\r\n

* AI BC=3 00 00 00

Prints a “printer ID”. On one 870, prints the following:

51-51-50-51-49-48\r\n

The Windows driver has a text entry field where this number can be entered, but
its purpose is unknown.

* LD BC=0

Load printer defaults from NVRAM, DIP switches, and/or ROM. This appar-
ently does not load factory defaults per se, but any settings that are saved. This
is commonly used right at the end of each print job after the ESC @ printer reset
command.

* CH BC=2 00 xx

Perform a head cleaning cycle. The heads to clean are determined by parameter
xx:

Table 5-5. Head cleaning parameters

xx Description

00 Clean all heads

01 Clean black head

02 Clean color heads

While xx = 00 is likely supported by all printers, xx = 01 and 02 are not.

* DT BC=3 00 xx 00

Print an alignment pattern. There are three patterns, which are picked via the
choice of xx. Pattern 0 is coarse, pattern 1 is medium, and pattern 2 is fine.

* DA BC=4 00 xx 00 yy

Set results for the alignment pattern. xx is the pattern (1--3); yy is the best choice
from the set (1--7 or 1--15). This does not save to NVRAM, so when the printer
is powered off, the setting will be lost.

25

Chapter 5. ESC/P2

* SV BC=0

Save the current settings to NVRAM.

* RS BC=1 01

Reset the printer.

* IQ BC=1 01

Get ink quantity. This requires direct access to the printer port. The return looks
like

IQ:KKCCMMYY

or

IQ:KKCCMMYYccmm

(for 4-color and 6-color printers respectively), where each pair of digits are hex-
adecimal representations of percent.

The following two commands have been observed on an STP 870.

* IR BC=2 00 xx

Function unknown. This command has been observed on an STP 870 with xx=03
at the start of a job and xx=02 at the end of a job (where it is followed by an LD
command). When in roll mode, the values change to xx=01 at the start of a job
and xx=00 at the end of a job.

* FP BC=3 00 pos[2]

Specify the horizontal left margin in units of 1/360 inch. The default value for
pos is 0. For borderless printing on printers that support it, a value of -80 (FFB0h)
should be used.

The commands below are partially documented in the Stylus Pro 9000 manual. Much
of this information is interpreted; none is tested.

* SN BC=3 00 xx yy

Select Mechanism Sequence. xx controls which sub-operation is performed.
xx=00 selects the “Feed paper sequence setting”. yy can take on the following
values (on the STP 870, at any rate):

Table 5-6. Media types

yy Media type

0 Default

1 Plain paper

2 Postcards

3 Film (photo quality glossy film,
transparencies)

4 Envelopes

5 Plain paper (fast load)

6 Back light film (although this has
been observed with heavyweight
matte paper)

26

Chapter 5. ESC/P2

yy Media type
7 Matte paper (observed with 360 dpi

inkjet paper, and photo quality inkjet
paper)

8 Photo paper

Experimentation suggests that this setting changes details of how the printers’
cut sheet feeder works, presumably to tune it for different types of paper.

xx=01 controls the platen gap setting; yy=00 is the default, yy=1 or 2 are higher
settings.

xx=02 controls paper loading speed (yy=0 is normal, 1 is fast, 2 is slow). It ap-
pears that 1 is used when printing on “plain paper”, “360dpi ink jet paper” or
“ink jet transparencies”, and yy=00 for all other paper type settings.

xx=07 controls duplex printing for printers with that capability (yy=0 is default,
for non-duplex printing; 1 is front side of the paper, and 2 is back side).

xx=09 controls zero margin printing on the printers with the capability of print-
ing zero-margin on all sides (Stylus Photo 780/790, 890, and 1280/1290). yy=0 is
the default; 1 enables zero margin printing.

* PP BC=3 00 xx yy

Set Paper Path. xx=2 indicates manual feed, xx=3 is for roll paper. yy selects
“paper path number”.

* AC BC=2 00 xx

Set Auto Cutting State. xx=0 selects auto cutting off, xx=1 selects auto cutting
on, and xx=2 indicates horizontal print page line on. It appears that with auto
cutting on, roll paper is cut automatically at the point a formfeed character is
sent. The formfeed character is normally used to eject a page; with this turned
on, it also cuts the roll paper. Horizontal print page line on prints a narrow line
of black dots at the position the paper should be cut manually.

* DR BC=4 00 xx DT2

Set Drying Time. xx=00 sets the drying time “per scan” (per pass?); xx=01 sets
the drying time per page. DT indicates the drying time, which is in seconds if
page mode is used and in milliseconds if scan mode is used. DT must not exceed
3600 seconds in per-page mode and 10000 milliseconds in per-scan mode.

* IK BC=2 00 xx

Select Ink Type. xx=00 selects dye ink. Pigment ink is apparently selected by
xx=01. This probably does not apply to the consumer-grade printers.

* PZ BC=2 00 xx

Set Pause After Printing. xx=00 selects no pause after printing; xx=01 selects
pause after printing. If turned on, the printer is paused after the page is ejected
(by the FF byte). If cutting is turned on, the printer is paused after the cutting or
printing of the horizontal cut line.

* EX BC=6 00 00 00 00 0x14 xx

Set Vertical Print Page Line Mode. xx=00 is off, xx=01 is on. If turned on, this
prints vertical trim lines at the left and right margins.

* EX BC=6 00 00 00 00 0x05 xx

Set Roll Paper Mode. If xx is 0, roll paper mode is off; if xx is 1, roll paper mode
is on.

27

Chapter 5. ESC/P2

* EX BC=3 00 xx yy

Appears to be a synonym for the SN command described above.

* PH BC=2 00 xx

Select Paper Thickness. Set the paper thickness xx in .1 mm units. This must not
exceed 0x10 (1.6 mm). If the thickness is set “more than” .6 mm (which probably
means “at least” 0.6 mm, since the other case reads “less than 0.5 mm”), the
platen gap is set high irrespective of the SN command.

* PM BC=2 00 00

Function unknown. Used on the STC 3000 at least when using roll feed, and on
the STP 870 in all print files analysed to date.

* ST BC=2 00 xx

Epson’s STP 750/1200 programming guide refers to the ST command as “Set
printer state reply”. If xx is 0 or 2, the printer will not send status replies. If xx
is 1 or 3, the printer will send status replies. The status replies consist of state,
error codes, ink leve, firmware version, and warning status.

The actual reply is documented as

@BDC ST\r
ST: xx;
[ER: yy;]
IQ: n1n2n3n4;
[WR: w1,w2...;]
RV: zz;
AI:CW:02kkccmmyy, MI:mm
[TC:tttt;]
INK:...;
\f

(\r is carriage return; \n is newline; \f is formfeed.)

ST is the printer status:

Table 5-7. Printer status codes

Status code Description

00 Error

01 Self-test

02 Busy

03 Waiting while printing

04 Idle

07 Cleaning/filling ink heads

08 Not yet initialized/filling heads

ER, if provided, is the error status:

Table 5-8. Printer error codes

Error code Description

00 Fatal Error

01 Interface not selected

04 Paper jam

28

Chapter 5. ESC/P2

Error code Description
05 Out of ink

06 Paper out

0D Paper gap error

10 Maintenance request

11 Tear-off mode selected

12 Double feed error

1C Cutter position error

1D Cutter jam

1E Ink color error

23 Ink combination error

IQ is the amount of ink left, as a (decimal!) percentage expressed in hexadecimal.
The values are black, cyan, magenta, and yellow. 6 and 7 color printers usually
specify two or three additional values for light cyan, light magenta, and gray.
However, some low end 6-color printers specify only four values.

For printers with different ink cartridge options, the following additional values
may appear:

Table 5-9. Printer additional ink codes

Ink code Description

NA Ink cartridge is not inserted

RE Ink cartridge information cannot be
read

WE Ink cartridge information cannot be
written

CI Ink cartridge is inserted, but has not
been read

WR, if provided, is the warning status:

Table 5-10. Printer warning codes

Warning code Description

10 Black ink low (Photo black on
printers using UltraChrome® ink)

11 Cyan

12 Magenta

13 Yellow

14 Light cyan (presumably)

15 Light magenta (presumably)

17 Gray (with UltraChrome-compatible
printers)

18 Matte black 1 (UltraChrome)

19 Matte black 2 (UltraChrome)

RV is the firmware revision (one byte ASCII).

29

Chapter 5. ESC/P2

AI is actuator information. These are two byte ASCII codes that indicate “ink
weight rank ID” of KCMY, respectively.

TC, if provided, is the total time of cleaning or ink filling (?).

RC, if provided, is the firmware revision.

INK: and MI are not documented.

* SM BC=2 00 xx

Set Status Reply Rate. xx is the repeat interval in seconds. If xx is 0, the status is
returned only when the printer’s state changes.

* ST BC=1 01

Reply Printer Status. The reply is formatted as follows:

@BDC PS\r\nST:xx;\f

\r is carriage return; \n is newline; \f is formfeed). If xx (the reply value) is 0 or
2, automatic status update is disabled; if 1 or 3, it is enabled.

* SM BC=1 01

Reply Printer Status Rate. The reply is formatted as follows:

@BDC PS\r\nST:xx;\f

\r is carriage return; \n is newline; \f is formfeed). See SM BC=2 above for the
meaning of the return value.

* ?? BC=xx y[1] ... y[xx]

Echo Parameters (perhaps better described as Echo Commands). The command
string is executed (it would appear from the documentation), and the string sent
is returned using a sequence similar to that described in the ST BC=1 and SM
BC=1 commands. Note that in this case the number of bytes is variable!

* SM BC=2 00 02

Function unknown. Used on the STC 3000 at least when using roll feed.

* JE BC=1 00

Function unknown. On new printers (STC 740 or newer), this command should
be sent after all data has been sent. If this command is not sent, and the printer is
connected to a Windows system, the last page of the job will not print completely.
The most likely explanation for for this is that the Windows driver typically puts
the printer in 1284.4 packet mode, and this command has the effect of flushing
the buffer in the printer.

* CO BC=8 00 cutter[1] page[1] unit[1] position[4]

Specify paper cutting on Stylus Photo 2200 (and perhaps some other printers).
cutter must be 0. page should be one of the following:

Table 5-11. Paper cutting codes

Code Description

0 All pages

1 First page only

2 Last page only

unit should be one of the following:
30

Chapter 5. ESC/P2

Table 5-12. Paper cutting units

Code Description

0 1/360 in.

1 1/720 in.

2 1/1440 in.

This command should be used twice. The first CO command specifies where the
page will be cut at the top, and the second specifies where the page will be cut
at the bottom. This permits cutting both the top and the bottom of the page.

Appropriate Remote Commands
All of the remote commands described above are wrapped up with the usual boil-
erplate. The files always start with 00 00 00 and the “magic” command described
above, then two ESC @s to reset the printer. The remote command sequences come
next; if they print anything that is usually followed by a FF (0C hex) character to feed
the page, then the file ends with another two ESC @s to get back to the ground state.

An alignment sequence goes like this:

1. Host uses DT to print an alignment sheet.

2. User eyeballs the sheet to see which is the best aligned pattern.

3. Host sends a DA command indicating which pattern the user chose.

4. If the user said “realign”, meaning he isn’t done yet, go to step 1.

5. We are done: host sends a SV command and exits.

The sequence used (by the STC 3000, at least) to print from the roll feed is (with byte
count omitted):

PM 00 00
SN 00 00 00
EX 00 00 00 00 05 01
ST 00 01
SM 00 02

The sequence used by the STP 870 to print on plain paper is

PM 00 00
IR 00 03
SN 00 00 01
SN 00 01 00
SN 00 02 01
EX 00 00 00 00 05 00
FP 00 00 00

and the job finishes with

IR 00 02
LD

For different paper type settings on the STP 870, the arguments to SN vary. The argu-
ments to the first and third SN commands are as outlined in the description of the SN
command above; the arguments to the second (“platen gap”) are 00 01 01 for thick
papers (“matte paper—heavyweight”, “photo paper” and “premium glossy photo
paper”) and 00 01 00 for all others.

31

Chapter 5. ESC/P2

For roll-mode printing, the STP 870’s sequence changes as follows. IR’s arguments
become 00 01 in the header, and 00 00 after the job, and EX’s last argument changes
from 00 to 01.

For zero-margin printing on the STP 870, the arguments to FP become 00 0xb0 0xff.
This moves the origin about 5.5mm to the left, to a point one tenth of an inch to the
left of the left-hand edge of the paper, allowing printing right up to (and beyond) the
edge of the paper. Some printers (at least the STP 870) include white absorbent pads
at the left margin position and other positions (89mm and 100mm on the STP 870)
to soak up ink which misses the edge of the paper. Printing off the edge of paper of
a width not aligned with a pad could result in making a mess of the inside of the
printer and ink getting on the reverse of the paper.

32

Chapter 6. Weaving for inkjet printers

Introduction
The Epson Stylus Color/Photo printers don’t have memory to print using all of the
nozzles in the print head. For example, the Stylus Photo 700/EX has 32 nozzles. At
720 dpi, with an 8" wide image, a single line requires ((8 × 720 × 6) / 8) bytes, or 4320
bytes (because the Stylus Photo printers have 6 ink colors). To use 32 nozzles per
color would require 138240 bytes. It’s actually worse than that, though, because the
nozzles are spaced 8 rows apart. Therefore, in order to store enough data to permit
sending the page as a simple raster, the printer would require enough memory to
store 256 rows, or 1105920 bytes. Considering that the Photo EX can print 11" wide,
we’re looking at more like 1.5 MB. In fact, these printers are capable of 1440 dpi
horizontal resolution. This would require 3 MB. The printers actually have 64K-256K.

With the newer (740/750 and later) printers it’s even worse, since these printers sup-
port multiple dot sizes; of course, the even newer 2880×720 printers don’t help either.

Older Epson printers had a mode called MicroWeave™. In this mode, the host fed the
printer individual rows of dots, and the printer bundled them up and sent them to
the print head in the correct order to achieve high quality. This MicroWeave mode
still works in new printers, but in some cases the implementation is very minimal:
the printer uses exactly one nozzle of each color (the first one). This makes printing
extremely slow (more than 30 minutes for one 8.5×11" page), although the quality is
extremely high with no visible banding whatsoever. It’s not good for the print head,
though, since no ink is flowing through the other nozzles. This leads to drying of ink
and possible permanent damage to the print head.

By the way, although the Epson manual says that microweave mode should be used
at 720 dpi, 360 dpi continues to work in much the same way. At 360 dpi, data is fed to
the printer one row at a time on all Epson printers. The pattern that the printer uses
to print is very prone to banding. However, 360 dpi is inherently a low quality mode;
if you’re using it, presumably you don’t much care about quality. It is possible to do
microweave at 360 DPI, with significantly improved quality.

Except for the Stylus Pro printers (5000, 5500, 7000, 7500, 9000, 9500, and when it’s re-
leased the 10000), which can do microweave at any resolution, printers from roughly
the Stylus Color 600 and later do not have the capability to do MicroWeave correctly
in many cases (some printers can do MicroWeave correctly at 720 DPI). Instead, the
host must arrange the output in the order that it will be sent to the print head. This
is a very complex process; the jets in the print head are spaced more than one row
(1/720") apart, so we can’t simply send consecutive rows of dots to the printer. In-
stead, we have to pass e. g. the first, ninth, 17th, 25th... rows in order for them to print
in the correct position on the paper. This interleaving process is called "soft" weaving.

This decision was probably made to save money on memory in the printer. It cer-
tainly makes the driver code far more complicated than it would be if the printer
could arrange the output. Is that a bad thing? Usually this takes far less CPU time
than the dithering process, and it does allow us more control over the printing pro-
cess, e.g. to reduce banding. Conceivably, we could even use this ability to map out
bad jets.

Interestingly, apparently the Windows (and presumably Macintosh) drivers for most
or all Epson printers still list a “microweave” mode. Experiments have demonstrated
that this does not in fact use the “microweave” mode of the printer. Possibly it does
nothing, or it uses a different weave pattern from what the “non-microweave” mode
does. This is unnecessarily confusing, at least for people who write drivers who try
to explain them to people who don’t.

What makes this interesting is that there are many different ways of of accomplishing
this goal. The naive way would be to divide the image up into groups of 256 rows (for
a printer with 32 jets and a separation of 8 rows), and print all the mod8=0 rows in the

33

Chapter 6. Weaving for inkjet printers

first pass, mod8=1 rows in the second, and so forth. The problem with this approach
is that the individual ink jets are not perfectly uniform; some emit slightly bigger
or smaller drops than others. Since each group of 8 adjacent rows is printed with the
same nozzle, that means that there will be distinct streaks of lighter and darker bands
within the image (8 rows is 1/90", which is visible; 1/720" is not). Possibly worse is
that these patterns will repeat every 256 rows. This creates banding patterns that are
about 1/3" wide.

So we have to do something to break up this patterning.

Epson do not publish the weaving algorithms that they use in their bundled drivers.
Indeed, their developer web site (http://www.ercipd.com/isv/edr_docs.htm) does
not even describe how to do this weaving at all; it says that the only way to achieve
720 dpi is to use MicroWeave. It does note (correctly) that 1440 dpi horizontal can
only be achieved by the driver (i. e. in software). The manual actually makes it fairly
clear how to do this (it requires two passes with horizontal head movement between
passes), and it is presumably possible to do this with MicroWeave.

The information about how to do this is apparently available under non-disclosure
agreement (NDA). It’s actually easy enough to reverse engineer what’s inside a print
file with a simple Perl script, which is supplied with the Gutenprint distribution as
tests/parse-escp2. In any event, we weren’t particularly interested in the weaving
patterns Epson used. There are many factors that go into choosing a good weaving
pattern; we’re learning them as we go along. Issues such as drying time (giving the
ink a few seconds more or less to dry can have highly visible effects) affect the quality
of the output.

The Uniprint GhostScript driver has been able to do weaving for a long time. It uses
patterns that must be specified for each choice of resolution and printer. We preferred
an algorithmic approach that computes a weave pattern for any given choice of in-
puts. This obviously requires extensive testing; we developed a test suite specifically
for this purpose.

Weaving algorithms
I considered a few algorithms to perform the weave. The first one I devised let me
use only (jets - distance_between_jets + 1) nozzles, or 25. This is OK in principle, but
it’s slower than using all nozzles. By playing around with it some more, I came up
with an algorithm that lets me use all of the nozzles, except near the top and bottom
of the page.

This still produces some banding, though. Even better quality can be achieved by
using multiple nozzles on the same line. How do we do this? In 1440×720 mode,
we’re printing two output lines at the same vertical position. However, if we want
four passes, we have to effectively print each line twice. Actually doing this would
increase the density, so what we do is print half the dots on each pass. This produces
near-perfect output, and it’s far faster than using (pseudo) “MicroWeave”.

Yet another complication is how to get near the top and bottom of the page. This
algorithm lets us print to within one head width of the top of the page, and a bit
more than one head width from the bottom. That leaves a lot of blank space. Doing
the weave properly outside of this region is increasingly difficult as we get closer to
the edge of the paper; in the interior region, any nozzle can print any line, but near
the top and bottom edges, only some nozzles can print. We originally handled this
by using the naive way mentioned above near the borders, and switching over to the
high quality method in the interior. Unfortunately, this meant that the quality is quite
visibly degraded near the top and bottom of the page. We have since devised better
algorithms that allow printing to the extreme top and bottom of the region that can
physically be printed, with only minimal loss of quality.

Epson does not advertise that the printers can print at the very top of the page, al-
though in practice most of them can. The quality is degraded to some degree, and we

34

Chapter 6. Weaving for inkjet printers

have observed that in some cases not all of the dots get printed. Epson may have de-
cided that the degradation in quality is sufficient that printing in that region should
not be allowed. That is a valid decision, although we have taken another approach.

Simple weaving algorithms
The initial problem is to calculate the starting position of each pass; the row number
of the printer’s top jet when printing that pass. Since we assume the paper cannot
be reverse-fed, the print head must, for each pass, start either further down the page
than the previous pass or at the same position. Each pass’s start point is therefore at
a non-negative offset from the previous pass’s start point.

Once we have a formula for the starting row of each pass, we then turn that “inside
out” to get a formula for the pass number containing each row.

First, let’s define how our printer works. We measure vertical position on the paper
in “rows”; the resolution with which the printer can position the paper vertically. The
print head contains J ink jets, which are spaced S rows apart.

Consider a very simple case: we want to print a page as quickly as possible, and we
mostly don’t care how sparse the printing is, so long as it’s fairly even.

It’s pretty obvious how to do this. We make one pass with the print head, printing J
lines of data, each line S rows after the previous one. We then advance the paper by
S × J rows and print the next row. For example, if J = 7 and S = 4, this method can be
illustrated like this:

pass number
| row number------->
| | 111111111122222222223333333333444444444455555555556666666666
| 0123456789012345678901234567890123456789012345678901234567890123456789
0 *---*---*---*---*---*---*
1 *---*---*---*---*---*---*
2 \-----------------------/ *---*---*---*---*---*-

7 jets \---/
4 rows offset from one jet to the next

\---------------------------/
7*4=28 rows offset from one pass to the next

In these examples, the vertical axis can be thought of as the time axis, with the pass
number shown at the left margin, while the row number runs horizontally. A * shows
each row printed by a pass, and a row of - is used to link together the rows printed
by one pass of the print head. The first pass is numbered 0 and starts at row 0. Each
subsequent pass p starts at row p × S × J. Each pass prints J lines, each line being S
rows after the previous one. (For ease of viewing this file on a standard terminal, I’m
clipping the examples at column 80.)

This method covers the whole page with lines printed evenly S rows apart. However,
we want to fill in all the other rows with printing to get a full-density page (we’re ig-
noring oversampling at this stage). Where we have previously printed a single pass,
we’ll now print a “pass block”: we print extra passes to fill in the empty rows. A
naive implementation might look like this:

0 *---*---*---*---*---*---*
1 *---*---*---*---*---*---*
2 *---*---*---*---*---*---*
3 *---*---*---*---*---*---*
4 *---*---*---*---*---*---*
5 *---*---*---*---*---*---*
6 *---*---*---*---*---*---*
7 *---*---*---*---*---*---*
8 *---*---*---*---*---*-
9 *---*---*---*---*---*

35

Chapter 6. Weaving for inkjet printers

10 *---*---*---*---*---
11 *---*---*---*---*--

(Now you can see why this process is called “weaving”!)

Perfect weaving
This simple weave pattern prints every row, but will give conspicuous banding pat-
terns for the reasons discussed above.

Let’s start improving this for our simple case. We can reduce banding by making sure
that any given jet never prints a row too close to another row printed by the same jet.
This means we want to space the rows printed by a given jet evenly down the page.
In turn, this implies we want to advance the paper by as nearly an equal amount after
each pass as possible.

Each pass block prints S × J lines in S passes. The first line printed in each pass block
is S × J rows lower on the page than the first line printed in the previous pass block.
Therefore, if we advance the paper by J rows between each pass, we can print the
right number of passes in each block and advance the paper perfectly evenly.

Here’s what this “perfect” weave looks like:

start of full weave
|

0 *---*---*---*---*---*---*
1 *---*---*---*---*---*---*
2 *---*---*---*---*---*---*
3 *---*---*---*---*---*---*
4 *---*---*---*---*---*---*
5 *---*---*---*---*---*---*
6 *---*---*---*---*---*---*
7 *---*---*---*---*---*---*
8 *---*---*---*---*---*-
9 *---*---*---*--
10 *---*---
11 *

You’ll notice that, for the first few rows, this weave is too sparse. It is not until the row
marked “start of full weave” that every subsequent row is printed. We can calculate
this start position as follows:

start = (S - 1) × (J - 1)

For the moment, we will ignore this problem with the weave. We’ll consider later
how to fill in the missing rows.

Let’s look at a few more examples of perfect weaves:

S = 2, J = 7, start = (2-1) × (7-1) = 6:
starting row of full weave
|

0 *-*-*-*-*-*-*
1 *-*-*-*-*-*-*
2 *-*-*-*-*-*-*
3 *-*-*-*-*-*-*
4 *-*-*-*-*-*-*
5 *-*-*-*-*-*-*
6 *-*-*-*-*-*-*
7 *-*-*-*-*-*-*

36

Chapter 6. Weaving for inkjet printers

S = 7, J = 2, start = 6:
start
|

0 *------*
1 *------*
2 *------*
3 *------*
4 *------*
5 *------*
6 *------*
7 *------*
8 *------*
9 *------*

S = 4, J = 13, start = 36:
start
|

0 *---*---*---*---*---*---*---*---*---*---*---*---*
1 *---*---*---*---*---*---*---*---*---*---*---*---*
2 *---*---*---*---*---*---*---*---*---*---*---*---*
3 *---*---*---*---*---*---*---*---*---*--
4 *---*---*---*---*---*---*-
5 *---*---*---*

S = 13, J = 4, start = 36:
start
|

0 *------------*------------*------------*
1 *------------*------------*------------*
2 *------------*------------*------------*
3 *------------*------------*------------*
4 *------------*------------*------------*
5 *------------*------------*------------*
6 *------------*------------*------------*
7 *------------*------------*------------*
8 *------------*------------*------------*
9 *------------*------------*------------*
10 *------------*------------*-----------
11 *------------*------------*-------
12 *------------*------------*---
13 *------------*------------
14 *------------*--------
15 *------------*----
16 *------------*
17 *---------
18 *-----
19 *-

S = 8, J = 5, start = 28:
start
|

0 *-------*-------*-------*-------*
1 *-------*-------*-------*-------*
2 *-------*-------*-------*-------*
3 *-------*-------*-------*-------*
4 *-------*-------*-------*-------*
5 *-------*-------*-------*-------*
6 *-------*-------*-------*-------*
7 *-------*-------*-------*-------*
8 *-------*-------*-------*-------*
9 *-------*-------*-------*-------*

37

Chapter 6. Weaving for inkjet printers

10 *-------*-------*-------*---
11 *-------*-------*------
12 *-------*-------*-
13 *-------*----
14 *-------
15 *--

S = 9, J = 5, start = 32:
start
|

0 *--------*--------*--------*--------*
1 *--------*--------*--------*--------*
2 *--------*--------*--------*--------*
3 *--------*--------*--------*--------*
4 *--------*--------*--------*--------*
5 *--------*--------*--------*--------*
6 *--------*--------*--------*--------*
7 *--------*--------*--------*--------*
8 *--------*--------*--------*--------*
9 *--------*--------*--------*-----
10 *--------*--------*--------*
11 *--------*--------*----
12 *--------*--------
13 *--------*---
14 *-------
15 *--

S = 6, J = 7, start = 30:
start
|

0 *-----*-----*-----*-----*-----*-----*
1 *-----*-----*-----*-----*-----*-----*
2 *-----*-----*-----*-----*-----*-----*
3 *-----*-----*-----*-----*-----*-----*
4 *-----*-----*-----*-----*-----*-----*
5 *-----*-----*-----*-----*-----*-----*
6 *-----*-----*-----*-----*-----*-----
7 *-----*-----*-----*-----*----
8 *-----*-----*-----*---
9 *-----*-----*--
10 *-----*-
11 *

Weaving collisions
A perfect weave is not possible in all cases. Let’s look at another example:

S = 6, J = 4:
0 *-----*-----*-----*
1 *-----*-----*-----*
2 *-----*-----*-----*
3 *-----*-----*-----*
4 ^ *-^---*-----*-----*
5 | ^ | *-^---*-----*-----*

OUCH! ^ | ^
| |

38

Chapter 6. Weaving for inkjet printers

Here we have a collision. Some lines printed in later passes overprint lines printed
by earlier passes. We can see why by considering which row number is printed by a
given jet number j (numbered from 0) of a given pass, p:

row(p, j) = (p × J) + (j × S)

Because J = 4 and S = 6 have a common factor of 2, jet 2 of pass 0 prints the same row
as jet 0 of pass 3:

row(0, 2) = (0 × 4) + (2 × 6) = 12
row(3, 0) = (3 × 4) + (0 × 6) = 12

In fact, with this particular weave pattern, jets 0 and 1 of pass p + 3 always overprint
jets 2 and 3 of pass p. We’ll represent overprinting rows by a ^ in our diagrams, and
correct rows by *:

S = 6, J = 4:
0 *-----*-----*-----*
1 *-----*-----*-----*
2 *-----*-----*-----*
3 ^-----^-----*-----*
4 ^-----^-----*-----*
5 ^-----^-----*-----*

What makes a “perfect” weave?
So what causes the perfect weave cases to be perfect, and the other cases not to be?
In all the perfect cases above, S and J are relatively prime (i.e. their greatest common
divisor (GCD) is 1). As we mentioned above, S = 6 and J = 4 have a common factor,
which causes the overprinting. Where S and J have a GCD of 1, they have no common
factor other than 1 and, as a result, no overprinting occurs. If S and J are not relatively
prime, their common factor will cause overprinting.

We can work out the greatest common divisor of a pair of natural numbers using
Euler’s algorithm:

1. Start with the two numbers: (e.g.) 9, 24

2. Swap them if necessary so that the larger one comes first: 24, 9

3. Subtract the second number from the first: 15, 9

4. Repeat until the first number becomes smaller: 6, 9

5. Swap the numbers again, so the larger one comes first: 9, 6

6. Subtract again: 3, 6

7. Swap: 6, 3

8. Subtract: 3, 3

9. And again: 0, 3

10. When one of the numbers becomes 0, the other number is the GCD of the two
numbers you started with.

These repeated subtractions can be done with C’s % operator, so we can write this in
C as follows:

unsigned int
gcd(unsigned int x, unsigned int y)
{

39

Chapter 6. Weaving for inkjet printers

if (y == 0)
return x;

while (x != 0) {
if (y > x)

swap (&x, &y);
x %= y;

}
return y;

}

gcd(S,J) will feature quite prominently in our weaving algorithm.

If 0 ≤ j < J, there should only be a single pair (p, j) for any given row number. If S
and J are not relatively prime, this assumption breaks down. (For conciseness, let G
= GCD(S,J).)

S = 8, J = 6, G = 2:
0 *-------*-------*-------*-------*-------*
1 *-------*-------*-------*-------*-------*
2 *-------*-------*-------*-------*-------*
3 *-------*-------*-------*-------*-------*
4 ^-------^-------^-------*-------*-------*
5 ^-------^-------^-------*-------*-------*

In this case, jets 0, 1 and 2 of pass p + 4 collide with jets 3, 4 and 5 of pass p.

How can we calculate these numbers? Suppose we were to print using fewer jets, say
J / G jets. The greatest common divisor of J / G and S is 1, enabling a perfect weave.
But to get a perfect weave, we also have to advance the paper by a factor of G less:

0 *-------*-------* - - -
1 *-------*-------* - - -
2 *-------*-------* - - -
3 *-------*-------* - - -
4 *-------*-------* - - -
5 *-------*-------* - - -

If we left the paper advance alone, we’d get a sparse weave; only one row can be
printed every G rows:

0 *-------*-------* - - -
1 *-------*-------* - - -
2 *-------*-------* - - -
3 *-------*-------* - - -
4 *-------*-------* - - -
5 *-------*-------* - - -

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
These rows need filling in.

The rows that would have been printed by the jets we’ve now omitted (shown as -)
are printed by other jets on later passes.

Let’s analyse this. Consider how a pass p could collide with pass 0. Pass p starts at
offset p × J. Pass 0 prints at rows which are multiples of S. If p × J is exactly divisible
by S, a collision has occurred, unless (p ×J) ≥ J × S (which will happen when we
finish a pass block).

So, we want to find p and q such that p × J = q × S and p is minimised. Then p is the
number of rows before a collision, and q is the number of jets in pass 0 which are not
involved in the collision. To do this, we find the lowest common multiple of J and S,
which is L = (J × S) / G. L / J is the number of rows before a collision, and L / S is
the number of jets in the first pass not involved in the collision.

40

Chapter 6. Weaving for inkjet printers

Thus, we see that the first J / G rows printed by a given pass are not overprinted by
any later pass. However, the rest of the rows printed by pass p are overprinted by the
first J - (J / G) jets of pass p + (S / G). We will use C to refer to S / G, the number of
rows after which a collision occurs.

Another example:

S = 6, J = 9, G = 3, C = S / G = 2:
0 *-----*-----*-----*-----*-----*-----*-----*-----*
1 *-----*-----*-----*-----*-----*-----*-----*-----*
2 ^-----^-----^-----^-----^-----^-----*-----*-----*
3 ^-----^-----^-----^-----^-----^-----*-----*-----*
4 ^-----^-----^-----^-----^-----^-----*-----
5 ^-----^-----^-----^-----^-----^--

^^ ^^
These rows need filling in.

In this case, the first J - (J / G) = 9 - (9 / 3) = 6 jets of pass p + (6 / 3) = p + 2 collide
with the last 6 jets of pass p. Only one row in every G = 2 rows is printed by this
weave.

S = 9, J = 6, G = 3, C = 3:
0 *--------*--------*--------*--------*--------*
1 *--------*--------*--------*--------*--------*
2 *--------*--------*--------*--------*--------*
3 ^--------^--------^--------^--------*--------*
4 ^--------^--------^--------^--------*--------*
5 ^--------^--------^--------^--------*--------*

Here, the first J - (J / G) = 6 - (6 / 3) = 4 jets of pass p + (9 / 3) = p + 3 collide with the
last 4 jets of pass p.

Note that, in these overprinting cases, only rows divisible by G are ever printed. The
other rows, those not divisible by G, are not touched by this weave.

We can modify our weave pattern to avoid overprinting any rows and simultane-
ously fill in the missing rows. Instead of using J alone to determine the start of each
pass from the previous pass, we adjust the starting position of some passes. As men-
tioned before, we will divide the page into pass blocks, with S passes in each block.
This ensures that the first jet of the first pass in a block prints the row which the Jth
jet of the first pass of the previous block would have printed, if the print head had
one extra jet.

Looking back at an example of a perfect weave, we can divide it into pass blocks:

S = 7, J = 2, G = 1:
imaginary extra jet
|

0 *------* * <--start of pass block 0
1 *------* |
2 *------* |
3 *------*|
4 *-----|*
5 *---|--*
6 *-|----*

|
7 *------* <--start of pass block 1
8 *------*
9 *------*

We can now calculate the start of a given pass by reference to its pass block. The first
pass of pass block b always starts at row (b × S × J). The start row of each of the other
passes in the block are calculated using offsets from this row.

41

Chapter 6. Weaving for inkjet printers

For the example above, there are 7 passes in each pass block, and their offsets are 0,
2, 4, 6, 8, 10 and 12. The next pass block is offset S × J = 14 rows from the start of the
current pass block.

The simplest way to modify the “perfect” weave pattern to give a correct weave in
cases where G ̸= 1 is to simply change any offsets which would result in a collision,
until the collision disappears. Every printed row in the weave, as we have shown it
up to now, is separated from each of its neighbouring printed rows by G blank rows.
We will add an extra offset to each colliding pass in such a way that we push the pass
onto these otherwise blank rows.

We have seen that, unless G = 1, the plain weave pattern results in each pass colliding
with the pass S / G passes before. We will now subdivide our pass block into sub-
blocks, each consisting of B = S / G passes. There are therefore G subblocks in a pass
block.

For each subblock, the passes in that subblock have a constant offset added to them.
The offset is different for each subblock in a block. There are many ways we can
choose the offsets, but the simplest is to make the offset equal to the subblock number
(starting from 0).

Thus, the passes in the first subblock in each pass block remain at the offsets we’ve
already calculated from J. The passes in the second subblock each have 1 added to
their offset, the passes in the third subblock have 2 added, and so on. Thus, the offset
of pass p (numbered relative to the start of its pass block) is p × J + floor(p / B).

This gives us a weave pattern looking like this:

S = 6, J = 9, G = 3, B = 2:
0 *-----*-----*-----*-----*-----*-----*-----*-----*
1 ^ *-----*-----*-----*-----*-----*-----*-----*-----*
2 | +-> *-----*-----*-----*-----*-----*-----*-----*-----*
3 | | *-----*-----*-----*-----*-----*-----*-----*-----*
4 | | +-> *-----*-----*-----*-----*-----*-----*---
5 | | | *-----*-----*-----*-----*-----*
6 | | | +-> *-----*-----*-----*-----
7 | | | | *-----*-----*--
| | | start of pass block 1
| | | (offset returns to 0)
| | start of subblock 2 (offset 2 rows)
| start of subblock 1 (following passes offset by 1 row)

start of passblock 0, subblock 0 (pass start calculated as p*J)

S = 9, J = 6, G = 3, B = 3:
0 *--------*--------*--------*--------*--------*
1 *--------*--------*--------*--------*--------*
2 *--------*--------*--------*--------*--------*
3 *--------*--------*--------*--------*--------*
4 *--------*--------*--------*--------*--------*
5 *--------*--------*--------*--------*--------*
6 *--------*--------*--------*--------*---
7 *--------*--------*--------*------
8 *--------*--------*--------*
9 *--------*--------*-----
10 \---/ *--------*--------
11 small offset *--------*--
12 *----

This method of choosing offsets for subblocks can result in an occasional small off-
set (as shown above) between one pass and the next, particularly when G is large
compared to J. For example:

S = 8, J = 4, G = 4, B = 2:
42

Chapter 6. Weaving for inkjet printers

0 *-------*-------*-------*
1 *-------*-------*-------*
2 *-------*-------*-------*
3 *-------*-------*-------*
4 *-------*-------*-------*
5 *-------*-------*-------*
6 *-------*-------*-------*
7 *-------*-------*-------*
8 *-------*-------*-------*
9 \/ *-------*-------*-------*

very small offset!

We can plot the offset against the subblock number as follows:

subblock number
| offset
| |
| 0123
0 *
1 *
2 *
3 *
0 *
1 *
2 *
3 *

The discontinuity in this plot results in the small offset between passes.

As we said at the beginning, we want the offsets from each pass to the next to be as
similar as possible. We can fix this by calculating the offset for a given subblock b as
follows:

offset(b) = 2*b , if b < ceiling(G/2)
= 2*(G-b)-1 , otherwise

We can visualise this as follows, for G = 10:

0123456789
0 *
1 *
2 *
3 *
4 *
5 *
6 *
7 *
8 *
9 *
0 *
1 *
2 *
3 *
4 *
5 *
6 *
7 *
8 *
9 *

and for G = 11:

1
01234567890

43

Chapter 6. Weaving for inkjet printers

0 *
1 *
2 *
3 *
4 *
5 *
6 *
7 *
8 *
9 *

10 *
0 *
1 *
2 *
3 *
4 *
5 *
6 *
7 *
8 *
9 *

10 *

This gives a weave looking like this:

S = 12, J = 6, G = 6, B = 2:
0 *-----------*-----------*-----------*-----------*-----------*
1 *-----------*-----------*-----------*-----------*-----------*
2 *-----------*-----------*-----------*-----------*-----------*
3 *-----------*-----------*-----------*-----------*---------
4 *-----------*-----------*-----------*-----------*-
5 *-----------*-----------*-----------*-------
6 *-----------*-----------*-----------*
7 *-----------*-----------*------
8 *-----------*-----------*--
9 *-----------*--------
10 *-----------*----
11 *----------
12 *-----

This method ensures that the offset between passes is always in the range [J - 2, J +
2].

(This might seem odd, but it occurs to me that a good weave pattern might also make
a good score for bell ringers. When church bells are rung, a list of “changes” are used.
For example, if 8 bells are being used, they will, at first, be rung in order: 12345678. If
the first change is for bells 5 and 6, the bells will then be rung in the order 12346578. If
the second change is 1 and 2, the next notes are 21346578. After a long list of changes,
the order the bells are rung in can become quite complex.

For a group of bell-ringers to change the order of the notes, they must each either
delay their bell’s next ring, hasten it, or keep it the same as the time it takes to ring
all the bells once. The length of time between each ring of a given bell can only be
changed a little each time, though; with an ink-jet weave pattern, we want the same
to apply to the distance between passes.)

Finally, knowing the number of jets J and their separation S, we can calculate the
starting row of any given pass p as follows:

passesperblock = S
passblock = floor(p / passesperblock)
offsetinpassblock = p - passblock * passesperblock
subblocksperblock = gcd(S, J)
passespersubblock = S / subblocksperblock

44

Chapter 6. Weaving for inkjet printers

subpassblock = floor(offsetinpassblock / passespersubblock)
if subpassblock < ceiling(subblocksperblock/2)
subblockoffset = 2*subpassblock

else
subblockoffset = 2*(subblocksperblock-subpassblock)-1

startingrow = passblock * S * J + offsetinpassblock * J + subblockoffset

We can simplify this down to the following:

subblocksperblock = gcd(S, J)
subpassblock = floor((p % S) * subblocksperblock / S)
if subpassblock * 2 < subblocksperblock
subblockoffset = 2*subpassblock

else
subblockoffset = 2*(subblocksperblock-subpassblock)-1

startingrow = p * J + subblockoffset

So the row number of jet j of pass p is

subblocksperblock = gcd(S, J)

subblockoffset(p)
= 2*subpassblock , if subpassblock * 2 < subblocksperblock
= 2*(subblocksperblock-subpassblock)-1 , otherwise
where
subpassblock = floor((p % S) * subblocksperblock / S)

row(j, p) = p * J + subblockoffset(p) + j * S

Together with the inequality 0 ≤ j < J, we can use this definition in reverse to cal-
culate the pass number containing a given row, r. Working out the inverse definition
involves a little guesswork, but one possible result is as follows. Given a row, r, which
is known to be the first row of a pass, we can calculate the pass number as follows:

subblocksperblock = gcd(S, J)
subblockoffset = r % subblocksperblock
pass = (r - subblockoffset) / J

If G = 1, we can determine the pass number with this algorithm:

offset = r % J
pass = (r - offset) / J
while (offset % S != 0)
{
pass--
offset += J
}
jet = offset / S

Generalising, we come up with this algorithm. Given r, S and J:

G = gcd(S, J)
passespersubblock = S/G
subblockoffset = r % G
subpassblock = subblockoffset / 2 , if subblockoffset % 2 == 0

= G - (subblockoffset+1)/2 , otherwise
baserow = r - subblockoffset - (subpassblock * passespersubblock * J)
offset = baserow % J
pass = (baserow - offset) / J
while (offset % S != 0)
{
offset += J

45

Chapter 6. Weaving for inkjet printers

pass -= 1
}
subblockretreat = floor(pass / passespersubblock) % G
pass -= subblockretreat * passespersubblock
pass += subpassblock * passespersubblock
jet = (r - subblockoffset - pass * J) / S

Let’s look at some examples of imperfect but correct weave patterns:

S = 6, J = 4, GCD = 2, passesperblock = S = 6, passespersubblock = S / G = 6 / 2 = 3:
0 *-----*-----*-----*
1 *-----*-----*-----*
2 *-----*-----*-----*
3 *-----*-----*-----*
4 *-----*-----*-----*
5 *-----*-----*-----*
6 *-----*-----*-----*
7 *-----*-----*-----*
8 *-----*-----*-----*
9 *-----*-----*-----*
10 *-----*-----*-----*
11 *-----*-----*-----*
12 *-----*-----*-----*
13 *-----*-----*-----*
14 *-----*-----*-----*
15 *-----*-----*----
16 *-----*-----*
17 *-----*--
18 *-----
19 *-

S = 8, J = 6, G = 2, passesperblock = S = 8, passespersubblock= S / G = 8 / 2 = 4:
0 *-------*-------*-------*-------*-------*
1 *-------*-------*-------*-------*-------*
2 *-------*-------*-------*-------*-------*
3 *-------*-------*-------*-------*-------*
4 *-------*-------*-------*-------*-------*
5 *-------*-------*-------*-------*-------*
6 *-------*-------*-------*-------*-------*
7 *-------*-------*-------*-------*--
8 *-------*-------*-------*-----
9 *-------*-------*-------
10 *-------*-------*-
11 *-------*---
12 *----

S = 6, J = 12, G = 6, passesperblock = S = 6, passespersubblock= S / G = 6 / 6 = 1:
0 *-----*-----*-----*-----*-----*-----*-----*-----*-----*-----*-----*
1 *-----*-----*-----*-----*-----*-----*-----*-----*-----*-----*---
2 *-----*-----*-----*-----*-----*-----*-----*-----*-
3 *-----*-----*-----*-----*-----*-----*
4 *-----*-----*-----*-----*--
5 *-----*-----*----
6 *-----

We have now solved the basic weaving problem. There are two further refinements
we need to consider: oversampling, and filling in the missing rows at the start of the
weave.

46

Chapter 6. Weaving for inkjet printers

Oversampling
By oversampling, we mean printing on the same row more than once. There are two
reasons for oversampling: to increase the horizontal resolution of the printout and to
reduce banding.

Oversampling to increase horizontal resolution is necessary because, although the
printer might be able to position an ink drop to, for example, 1/1440" horizontally, it
may not be able to lay down two such drops 1/1440" apart. If it can print two drops
1/720" apart, 2x oversampling will be necessary to get a 1/1440" horizontal resolu-
tion. If it can only print two drops 1/360" apart, 4x oversampling will be necessary
for a 1/1440" horizontal resolution. The printer enforces this “drop spacing” by only
accepting raster passes with a horizontal resolution matching the spacing with which
it can print dots, so we must print passes at different horizontal positions if we are to
obtain a higher horizontal resolution. (Another reason it does this may be to reduce
the amount of memory needed in the printer.)

Oversampling can also be done to decrease the banding apparent in an image. By
splitting a row into two or more sets of dots (“lines”) and printing each line on the
same row, but with a different nozzle for each line, we can get a smoother print.

To quantify these two kinds of oversampling, we’ll introduce two new constants: H
shows how many different horizontal offsets we want to print at (the “horizontal
oversampling”) while O shows how many times we want to print each row, over
and above the number of times necessary for horizontal oversampling (the “extra
oversampling”).

It is necessary for all the lines printed by a given pass to have the same horizontal off-
set, but there need not be any relation between them in terms of extra oversampling.
For the moment, however, we will treat all oversampling as potentially requiring
this alignment; all lines in one pass must be derived from the original row data in the
same way. Thus, we’ll assume O = 1 for now.

So, how do we do this oversampling? In fact, it can be done easily: advance the paper
by a factor of H less between each pass. We’ll define a new variable, A, to show how
much we advance the paper between passes. Previously, we’d have defined A = J; we
now let A = J / H. This also affects our pass blocks. Printing one pass block used to
involve advancing the paper S × J rows; it now advances the paper (S×J) / H rows.
We therefore name a group of H pass blocks a “band”. Printing one band involves
advancing the paper S×J rows, as a pass block did before.

To keep our weave pattern working correctly, so that overprinting does not occur
within a pass block, we also have to redefine G as GCD(S,A). Here’s an example of
an oversampled weave pattern:

S = 4, J = 10, H = 2, A = J/H = 10/2 = 5, G= GCD(4,5) = 1, passesperblock = S = 4,
passespersubblock = S/G = 4/1 = 4:
0 *---*---*---*---*---*---*---*---*---*
1 *---*---*---*---*---*---*---*---*---*
2 *---*---*---*---*---*---*---*---*---*
3 *---*---*---*---*---*---*---*---*---*
4 *---*---*---*---*---*---*---*---*---*
5 *---*---*---*---*---*---*---*---*---*
6 *---*---*---*---*---*---*---*---*---*
7 *---*---*---*---*---*---*---*---*---*
8 *---*---*---*---*---*---*---*---*---*
9 *---*---*---*---*---*---*---*---*
10 *---*---*---*---*---*---*---
11 *---*---*---*---*---*--
12 *---*---*---*---*-
13 *---*---*---*
14 *---*---
15 *--

47

Chapter 6. Weaving for inkjet printers

Now we have to determine which line is printed by each jet on each pass. If we
number each line generated as we split up a row, we can use these numbers. We’ll
number the lines in our diagram by replacing the *s with integers in the range [0. . . H-
1].

Overprinting occurs once per pass block, so we can simply print pass block 0 with
line 0, pass block 1 with line 1, pass block 2 with line 2, etc, wrapping to 0 when we’ve
run out of lines:

0 0---0---0---0---0---0---0---0---0---0
1 0---0---0---0---0---0---0---0---0---0
2 0---0---0---0---0---0---0---0---0---0
3 0---0---0---0---0---0---0---0---0---0
4 1---1---1---1---1---1---1---1---1---1
5 1---1---1---1---1---1---1---1---1---1
6 1---1---1---1---1---1---1---1---1---1
7 1---1---1---1---1---1---1---1---1---1
8 0---0---0---0---0---0---0---0---0---0
9 0---0---0---0---0---0---0---0---0
10 0---0---0---0---0---0---0---
11 0---0---0---0---0---0--
12 1---1---1---1---1-
13 1---1---1---1
14 1---1---
15 1--

S = 4, J = 12, H = 2, A = J/H = 12/2 = 6, G= GCD(4,6) = 2, passesperblock= S = 4,
passespersubblock= S/G = 4/2 = 2:
0 0---0---0---0---0---0---0---0---0---0---0---0
1 0---0---0---0---0---0---0---0---0---0---0---0
2 0---0---0---0---0---0---0---0---0---0---0---0
3 0---0---0---0---0---0---0---0---0---0---0---0
4 1---1---1---1---1---1---1---1---1---1---1---1
5 1---1---1---1---1---1---1---1---1---1---1---1
6 1---1---1---1---1---1---1---1---1---1---1
7 1---1---1---1---1---1---1---1---1--
8 0---0---0---0---0---0---0---0-
9 0---0---0---0---0---0---
10 0---0---0---0---0
11 0---0---0--
12 1---1-

But what do we do if J is not an exact multiple of H? This is a difficult problem,
which I struggled with for quite a few days before giving in and taking the easy (but
less elegant) way out. The easy solution is to round J / H down, then add on the
accumulated error at the end of each band.

S = 4, J = 11, H = 2, A = floor(J/H) = floor(11/2) = 5, G = GCD(4,5) = 1, passesperblock
= S = 4, passespersubblock = S/G = 4/1 = 4
Band 0:
0 0---0---0---0---0---0---0---0---0---0---0
1 0---0---0---0---0---0---0---0---0---0---0
2 0---0---0---0---0---0---0---0---0---0---0
3 0---0---0---0---0---0---0---0---0---0---0
4 1---1---1---1---1---1---1---1---1---1---1
5 1---1---1---1---1---1---1---1---1---1---1
6 1---1---1---1---1---1---1---1---1---1---1
7 1---1---1---1---1---1---1---1---1---1---

Band 1:
8 | 0---0---0---0---0---0---0---0---0-
9 \---/ 0---0---0---0---0---0---0---0

48

Chapter 6. Weaving for inkjet printers

10 S*J rows 0---0---0---0---0---0---
11 0---0---0---0---0--
12 1---1---1---1-
13 1---1---1
14 1---

We can calculate the starting row and subpass number of a given pass in this scheme
as follows:

A = floor(J / H)
subblocksperblock = gcd(S, A)
subpassblock = floor((p % S) * subblocksperblock / S)
if subpassblock * 2 < subblocksperblock
subblockoffset = 2*subpassblock

else
subblockoffset = 2*(subblocksperblock-subpassblock)-1

band = floor(P / (S * H))
passinband = P % (S * H)
startingrow = band * S * J + passinband * A + subblockoffset
subpass = passinband / S

So the row number of jet j of pass p is

A = floor(J / H)
subblocksperblock = gcd(S, A)

subblockoffset(p)
= 2*subpassblock , if subpassblock * 2 < subblocksperblock
= 2*(subblocksperblock-subpassblock)-1 , otherwise
where
subpassblock = floor((p % S) * subblocksperblock / S)

band(p) = floor(p / (S * H))
passinband(p) = p % (S * H)

row(j, p) = band(p) * S * J + passinband(p) * A + subblockoffset(p) + j * S
row(j, p) = p * J + subblockoffset(p) + j * S

To be continued. . .

49

Chapter 6. Weaving for inkjet printers

50

Chapter 7. Dithering

The dithering code in src/main/print-dither.c attempts to reproduce various
shades of gray (or all colors) from only a few different inks (black, cyan, magenta,
yellow, and sometimes light cyan and light magenta). The dots can’t vary in dark-
ness or size (except for certain special printers), and so we need to lay down a certain
fraction of dots to represent each distinct level.

This sounds straightforward; in practice, it isn’t. Completely random distribution
of dots (simple probabilistic dithering) would create grainy clumps and light spots.
The smoothest pattern results from an equidistant spacing of dots. Approximating
this requires sophisticated algorithms. We have two dithering algorithms, an ordered
dither algorithm that uses a grid (matrix) to decide whether to print, and a modified
Floyd-Steinberg error diffusion algorithm that uses a grid in a slightly different way.

We currently have three dithering functions:

dither_fastblack

This produces pure black or white from a pre-dithered input. This is used for
two purposes: for printing pure black and white very quickly (e.g. text), and for
printing pre-screened monochrome output that was rasterized externally.

dither_black

This produces black from grayscale input. The new dither_black can produce
either a single or multiple levels of black, for printers supporting variable dot
size.

dither_cmyk

This produces 3, 4, 5, 6, or 7 color output (CMY, CMYK, CcMmYK, CcMmYy,
CcMmYyK, or any variants). The new routine can handle single or multiple lev-
els of each color.

There is a choice of dithering algorithms. Four of them are based on a basic error
diffusion, with a few tweaks of my own. The other one is ‘ordered’. However, they
all share the basic operation in common. First, the algorithm picks what kind of dot
(if there are multiple dot sizes and/or tones that may be picked) is the candidate to
be printed. This decision is made based on the darkness at the point being dithered.
Then, it decides whether the dot will be printed at all. What this is based on depends
upon which algorithm family we use. This is all described in more detail below.

Ordered dithering works by comparing the value at a given point with the value of a
tiled matrix. If the value at the point is greater than the value in the matrix, the dot is
printed. The matrix should consist of a set of evenly spaced points between 0 and the
upper limit. The choice of matrix is very important for print quality. A good dither
matrix will emphasize high frequency components, which distributes dots evenly
with a minimum of clumping. The matrices used here are all simple matrices that
are expanded recursively to create larger matrices with the same kind of even point
distribution. This is described below.

Note that it is important to use different matrices for the two sub-operations, because
otherwise the choice about whether to print and the choice of dot size will be corre-
lated. The usual result is that the print is either too dark or too light, but there can be
other problems.

Ordered dithering works quite well on single dot size, four color printers. It has not
been well tested on four color, variable dot size printers. It should be avoided on six
color printers.

Error diffusion works by taking the output error at a given pixel and “diffusing” it
into surrounding pixels. Output error is the difference between the amount of ink
output and the input level at each pixel. For simple printers, with one or four ink
colors and only one dot size, the amount of ink output is either 65536 (i. e. full output)

51

Chapter 7. Dithering

or 0 (no output). The difference between this and the input level is the error. Normal
error diffusion adds part of this error to the adjoining pixels in the next column and
the next row (the algorithm simply scans each row in turn, never backing up). The
error adds up until it reaches a threshold (half of the full output level, or 32768), at
which point a dot is output, the output is subtracted from the current value, and the
(now negative) error is diffused similarly.

Error diffusion works quite well in general, but it tends to generate artifacts which
usually appear as worm-like lines or areas of anomalous density. I have devised some
ways, as described below, of ameliorating these artifacts.

There are two sub-classes of error diffusion that we use here, ‘random’ and ‘hybrid’.
One of the techniques that we use to ameliorate the artifacts is to use a fuzzy thresh-
old rather than the hard threshold of half of the output level. Random error diffusion
uses a pseudo-random number to perturb the threshold, while hybrid error diffu-
sion uses a matrix. Hybrid error diffusion worked very poorly in 3.1.3, and I couldn’t
figure out why until I found a bug. It now works very well.

There is one additional variant (on both sub-classes), called ‘adaptive hybrid’ and
‘adaptive random’. The adaptive variant takes advantage of the fact that the patterns
that ordered dithering create are less visible at very low densities, while the artifacts
created by error diffusion are more objectionable at low densities. At low densities,
therefore, it uses ordered dithering; at higher densities it uses error diffusion.

Handling multiple output levels makes life a bit more complicated. In principle, it
shouldn’t be much harder: simply figure out what the ratio between the available
output levels is and have multiple thresholds. In practice, getting these right involves
a lot of trial and error. The other thing that’s important is to maximize the number of
dots that have some ink. This will reduce the amount of speckling. More on this later.

The next question: how do we handle black when printing in color? Black ink is much
darker than colored inks. It’s possible to produce black by adding some mixture of
cyan, magenta, and yellow—in principle. In practice, the black really isn’t very black,
and different inks and different papers will produce different color casts. However,
by using CMY to produce gray, we can output a lot more dots! This makes for a much
smoother image. What’s more, one cyan, one magenta, and one yellow dot produce
less darkness than one black dot, so we’re outputting that many more dots. Better
yet, with 6 or 7 color printers, we have to output even more light ink dots. So Epson
Stylus Photo printers can produce really smooth grays---if we do everything right.
The right idea is to use CMY at lower black levels, and gradually mix in black as the
overall amount of ink increases, so the black dots don’t really become visible within
the ink mass.

Variable dot sizes are handled by dividing the range between 0 and 65536 into seg-
ments. Each segment can either represent a range in which all of one kind of ink
(color and/or dot size) is used, with varying amounts of ink, or a transition region
between inks, in which equal numbers of dots are printed but the amount of each ink
will be adjusted throughout the range. Each range is represented by four numbers:

• Bottom of the range.

• Top of the range.

• Value of the lighter ink.

• Value of the darker ink.

In addition, the bit patterns and which type of ink are also represented, but they don’t
affect the actual algorithm.

As mentioned above, the basic algorithm is the same whether we use ordered dither
or error diffusion. We perform the following steps on each color of each pixel:

52

Chapter 7. Dithering

1. Compute the value of the particular color we’re printing. This isn’t usually the
pure CMY value; it’s adjusted to improve saturation and to limit the use of
black in light toned regions (to avoid speckling).

2. Find the range containing this value.

3. Compute where this value lies within the range. We scale the endpoints be-
tween 0 and 65536 for this purpose. So for example, if the bottom of the range
is 10,000 and the top of the range is 20,000, and the value is 12,500, we’re 1/4
of the way between the bottom and the top of the range, so our scale point is
16384.

4. Compute the “virtual value”. The virtual value is the distance between the
value of the lighter and the value of the darker ink. So if the value of the light
ink is 32768 and the dark ink is 65536, we compute a virtual value scaled ap-
propriately between these two values, which is 40960 in this case.

5. Using either error diffusion or ordered dither, the standard threshold is 1/2
of the value (20480 in this case). Using ordered dither, we want to compute
a value between 0 and 40960 that we will compare the input value against to
decide whether to print. Using pure error diffusion, we would compare the ac-
cumulated error against 20480 to decide whether to print. In practice, we use
the same matrix method to decide whether to print. The correct amount of ink
will be printed this way, but we minimize the squiggly lines characteristic of
error diffusion by dithering the threshold in this fashion. A future enhance-
ment will allow us to control the amount of dithering applied to the threshold.

The matrices were generated by Thomas Tonino <ttonino@bio.vu.nl> with an al-
gorithm of his devising. The algorithm is designed to maximize the spacing between
dots at any given density by searching the matrix for holes and placing a dot in the
largest available hole. It requires careful selection of initial points to achieve good
results, and is very time consuming. For best results, a different matrix must be used
for modes with 2:1 aspect ratio (e.g. 1440×720) than for 1:1 (e. g. 720×720). It is essen-
tial with any of these matrices that every point be used. Skipping points generates
low-frequency noise.

It’s essential to use different matrices for deciding whether to print and for deciding
what color (dark or light) to print. This should be obvious; the decision about whether
to print at all should be as independent as possible from the decision about what color
to print, because any bias will result in excess light or dark ink being printed, shifting
the tonal balance. We actually use the same matrices, but we shift them vertically and
horizontally. Assuming that the matrices are not self-correlated, this will yield good
results.

The ranges are computed from a list of ink values (between 0 and 1 for each possible
combination of dot size and ink tone, where the value represents the darkness of the
ink) and the desired maximum density of the ink. This is done in dither_set_ranges,
and needs more documentation.

I stated earlier that I’ve tweaked the basic error diffusion algorithm. Here’s what I’ve
done to improve it:

• We use a variable threshold to decide when to print, as discussed above. This does
two things for us: it reduces the slightly squiggly diagonal lines that are the mark
of error diffusion; and it allows us to lay down some ink even in very light areas
near the edge of the image. The squiggly lines that error diffusion algorithms tend
to generate are caused by the gradual accumulation of error. This error is partially
added horizontally and partially vertically. The horizontal accumulation results in
a dot eventually being printed. The vertical accumulation results in a dot getting
laid down in roughly the same horizontal position in the next row. The diagonal
squigglies result from the error being added to pixels one forward and one below
the current pixel; these lines slope from the top right to the bottom left of the image.

53

Chapter 7. Dithering

Error diffusion also results in pale areas being completely white near the top left of
the image (the origin of the printing coordinates). This is because enough error has
to accumulate for anything at all to get printed. In very pale areas it takes quite a
long time to build up anything printable at all; this results in the bare spots.

Randomizing the threshold somewhat breaks up the diagonals to some degree by
randomizing the exact location that the accumulated output crosses the threshold.
It reduces the false white areas by allowing some dots to be printed even when the
accumulated output level is very low. It doesn’t result in excess ink because the full
output level is still subtracted and diffused.

Excessive randomization leads to blobs at high densities. Therefore, as the density
increases, the degree of randomization decreases.

• Alternating scan direction between rows (first row is scanned left to right, second
is scanned right to left, and so on). This also helps break up white areas, and it also
seems to break up squigglies a bit. Furthermore, it eliminates directional biases in
the horizontal direction. This isn’t necessary for ordered dither, but it doesn’t hurt
either.

• Diffusing the error into more pixels. Instead of diffusing the entire error into (X+1,
Y) and (X, Y+1), we diffuse it into (X+1, Y), (X+K, Y+1), (X, Y+1), (X-K, Y+1) where
K depends upon the output level (it never exceeds about 10 dots, and is greater at
higher output levels). This really reduces squigglies and graininess. The amount
of this spread can be controlled; for line art, it should be less than for photographs
(of course, line art doesn’t usually contain much light color, but the error value can
be small in places!) In addition to requiring more computation, a wide ink spread
results in patterning at high dot densities (note that the dot density can be high
even in fairly pale regions if multiple dot sizes are in use).

• Don’t lay down any colored ink if we’re laying down black ink. There’s no point;
the colored ink won’t show. We still pretend that we did for purposes of error
diffusion (otherwise excessive error will build up, and will take a long time to
clear, resulting in heavy bleeding of ink into surrounding areas, which is very ugly
indeed), but we don’t bother wasting the ink. How well this will do with variable
dot size remains to be seen.

• Oversampling. This is how to print 1440×720 with Epson Stylus printers. Printing
full density at 1440×720 will result in excess ink being laid down. The trick is to
print only every other dot. We still compute the error as though we printed every
dot. It turns out that randomizing which dots are printed results in very speckled
output. This can be taken too far; oversampling at 1440×1440 or 1440×2880 vir-
tual resolution results in other problems. However, at present 1440×1440 (which
is more accurately called "1440×720 enhanced", as the Epson printers cannot print
1440 rows per inch) does quite well, although it’s slow.

What about multiple output levels? For 6 and 7 color printers, simply using different
threshold levels has a problem: the pale inks have trouble being seen when a lot of
darker ink is being printed. So rather than just using the output level of the particular
color to decide which ink to print, we look at the total density (sum of all output
levels). If the density’s high enough, we prefer to use the dark ink. Speckling is less
visible when there’s a lot of ink, anyway. I haven’t yet figured out what to do for
multiple levels of one color.

You’ll note that I haven’t quoted a single source on color or printing theory. I simply
did all of this empirically.

There are various other tricks to reduce speckling. One that I’ve seen is to reduce
the amount of ink printed in regions where one color (particularly cyan, which is
perceived as the darkest) is very pale. This does reduce speckling all right, but it also
results in strange tonal curves and weird (to my eye) colors.

Before any dither routine is used, init_dither must be called. This takes three ar-
guments: the input width (number of pixels in the input), the output width (number

54

Chapter 7. Dithering

of pixels in the output), and a stp_vars_t structure containing the parameters for the
print job.

init_dither returns a pointer to an opaque object representing the dither. This ob-
ject is passed as the first argument to all of the dither-related routines.

After a page is fully dithered, free_dither must be called to free the dither object
and perform any cleanup. In the future, this may do more (such as flush output). This
arrangement permits using these routines with programs that create multiple output
pages, such as the CUPS driver.

The dithering routines themselves have a number of control knobs that control in-
ternal aspects of the dithering process. These knobs are accessible via a number of
functions that can be called after init_dither.

• dither_set_density takes a double between 0 and 1 representing the desired ink
density for printing solid colors. This is used in a number of places in the dithering
routine to make decisions.

• dither_set_black_density takes a double between 0 and 1 representing the
desired ink density for printing black ink in color printing. This is used to
balance black against color ink. By default, this is equal to the density set by
dither_set_density. By setting it higher, more black ink will be printed. For
example, if the base density is .4 and the black density is .8, twice as much black
ink will be printed as would otherwise be called for.

This is not used when printing in monochrome. When printing monochrome, the
base density (dither_set_density) should be adjusted appropriately.

• dither_set_ink_budget takes an unsigned number representing the most ink
that may be deposited at a given point. This number is arbitrary; the limit is com-
puted by summing the size of each ink dot, which is supplied as a parameter in
dither_set_X_ranges. By default, there is no limit.

• dither_set_black_lower takes a double that should be between 0 and 1 that rep-
resents the lowest density level at which black ink will start to mix in with colored
ink to generate grays. The lower this is, the less density is required to use black ink.
Setting this too low will result in speckling from black dots, particularly on 6 and
7 color printers. Setting this too high will make it hard to get satisfactory black or
may result in sharp transition between blended colors and black. Default: 0.0468.

It is important to note that since the density scale is never linear (and since this
value is adjusted via other things happening during the dithering process) that
this does not mean that 95% gray will use any black ink. At this setting, there will
be no black ink used until about 50% gray.

This only applies to color mode.

This value should be set lower for printers capable of variable dot size, since more
dots can be laid down close to each other.

• dither_set_black_upper takes a double that should be between 0 and 1 that rep-
resents the highest density level at which colored inks will be mixed to create gray.
Setting this too low will result in speckly dark grays because there is not enough
ink to fill all the holes, or sharp transition between blended colors and black if it is
too close to the value of dither_set_black_upper Setting this too high will result
in poor black and dark tone quality. Default: 0.5. This results in 10% and darker
grays being printed with essentially all black.

This only applies to color mode.

• dither_set_black_levels takes three doubles that represent the amount of cyan,
magenta, and yellow respectively that are blended to create gray. The defaults are
1.0 for each, which is probably too low for most printers. These values are adjusted
to create a good gray balance. Setting these too low will result in pale light and
midtone grays, with a sharp transition to darker tones as black mixes in. Setting

55

Chapter 7. Dithering

them too high will result in overly dark grays and use of too much ink, possibly
creating bleed-through.

This only applies to color mode.

• dither_set_randomizers takes four integer values representing the degree of
randomness used for cyan, magenta, yellow, and black. This is used to allow some
printing to take place in pale areas. Zero is the most random; greater than 8 or so
gives very little randomness at all. Defaults are 0 for cyan, magenta, and yellow,
and 4 for black. Setting the value for black too low will result in black speckling in
pale areas. Setting values too high will result in pale areas getting no ink at all.

This currently only applies to single dot size in color and black. It should be ex-
tended to operate in variable dot size mode, although actually applying it correctly
will be tricky.

• dither_set_ink_darkness takes three doubles representing the contribution to
perceived darkness of cyan, magenta, and yellow. This is used to help decide when
to switch between light and dark inks in 6 and 7 color printers (with light cyan,
light magenta, and possibly light yellow). Setting these too low will result in too
much light ink being laid down, creating flat spots in the darkness curves and
bleed-through. Setting them too high will result in dark ink being used in pale
areas, creating speckle. The defaults are .4 for cyan, .3 for magenta, and .2 for yel-
low. Dark cyan will show against yellow much more than dark magenta will show
against cyan, since the cyan appears much darker than the yellow.

• dither_set_light_inks takes three doubles between 0 and 1 representing the
ratio in darkness between the light and dark versions of the inks. Setting these too
low will result in too much dark ink being used in pale areas, creating speckling,
while setting them too high will result in very smooth texture but too much use of
light ink, resulting in flat spots in the density curves and ink bleed-through. There
are no defaults. Any light ink specified as zero indicates that there is no light ink
for that color.

This only applies to 6 and 7 color printers in single dot size color mode, and only
to those inks which have light versions (usually cyan and magenta).

• dither_set_ink_spread takes a small integer representing the amount of ink
spread in the dither. Larger numbers mean less spread. Larger values are appropri-
ate for line art and solid tones; they will yield sharper transitions but more dither
artifacts. Smaller values are more appropriate for photos. They will reduce resolu-
tion and sharpness but reduce dither artifacts up to a point. A value of 16 or higher
implies minimum ink spread at any resolution no matter what the overdensity. A
value of 14 is typical for photos on single dot size, 6 color printers. For 4 color
printers, subtract 1 (more spread; the dots are farther apart). For variable dot size
printers, add 1 (more small dots are printed; less spread is desirable).

• dither_set_adaptive_divisor takes a float representing the transition point be-
tween error diffusion and ordered dither if adaptive dithering is used. The float is a
fraction of the printing density. For example, if you wish the transition to be at 1/4
of the maximum density (which works well on simple 4-color printers), you would
pass .25 here. With six colors and/or with multiple dot sizes, the values should be
set lower.

• dither_set_transition takes a float representing the exponent of the transition
curve between light and dark inks/dot sizes. A value less than 1 (typical when
using error diffusion) mixes in less dark ink/small dots at lower ends of the range,
to reduce speckling. When using ordered dithering, this must be set to 1.

• dither_set_X_ranges_simple (X = c, m, y or k) describes the ink choices available
for each color. This is useful in typical cases where a four color printer with vari-
able dot sizes is in use. It is passed an array of doubles between (0, 1] representing
the relative darkness of each dot size. The dot sizes are assigned bit patterns (and
ink quantities, see dither_set_ink_budget above) from 1 to the number of levels.
This also requires a density, which is the desired density for this color. This den-

56

Chapter 7. Dithering

sity need not equal the density specified in dither_set_density. Setting it lower
will tend to print more dark ink (because the curves are calculated for this color
assuming a lower density than is actually supplied).

• dither_set_X_ranges (X = c, m, y or k) describes in a more general way the ink
choices available for each color. For each possible ink choice, a bit pattern, dot size,
value (i. e. relative darkness), and whether the ink is the dark or light variant ink
is specified.

57

Chapter 7. Dithering

58

Appendix A. GNU General Public License

Preamble
The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software - to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive
source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

We protect your rights with two steps:

1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modi-
fied by someone else and passed on, we want its recipients to know that what they
have is not the original, so that any problems introduced by others will not reflect on
the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made it
clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

Section 0
This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this Gen-
eral Public License. The "Program", below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.

59

Appendix A. GNU General Public License

(Hereinafter, translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

Section 1
You may copy and distribute verbatim copies of the Program’s source code as you re-
ceive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

Section 2
You may modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License.

Exception:: If the Program itself is interactive but does not normally print such an an-
nouncement, your work based on the Program is not required to print an an-
nouncement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distri-
bution of derivative or collective works based on the Program.

60

Appendix A. GNU General Public License

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

Section 3
You may copy and distribute the Program (or a work based on it, under Section 2 in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommer-
cial distribution and only if you received the program in object code or exe-
cutable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

Section 4
You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

Section 5
You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

61

Appendix A. GNU General Public License

Section 6
Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

Section 7
If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you can-
not distribute so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redis-
tribution of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the sole
purpose of protecting the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

Section 8
If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among coun-
tries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

Section 9
The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and "any later version", you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

62

Appendix A. GNU General Public License

Section 10
If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY
BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS
NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Section 12
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

63

Appendix A. GNU General Public License

64

	The Developer's Guide to Gutenprint
	Table of Contents
	Preface
	Chapter 1. Copying, modification and redistribution
	Chapter 2. Using libgutenprint
	Code prerequisites
	Linking with libgutenprint
	Integrating libgutenprint
	pkgconfig
	make
	autoconf
	automake

	Chapter 3. Reporting Bugs
	Chapter 4. Adding a new printer
	printers.xml
	printdef XML elements

	The driver file
	Epson inkjet printers
	Tuning the printer
	Canon inkjet printers

	Chapter 5. ESC/P2
	Standard commands
	ESC/P2 Commands

	Remote Mode Commands
	ESC/P2 Remote Mode Commands

	Appropriate Remote Commands

	Chapter 6. Weaving for inkjet printers
	Introduction
	Weaving algorithms
	Simple weaving algorithms
	Perfect weaving
	Weaving collisions
	What makes a perfect weave?
	Oversampling

	Chapter 7. Dithering
	Appendix A. GNU General Public License
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	Section 0
	Section 1
	Section 2
	Section 3
	Section 4
	Section 5
	Section 6
	Section 7
	Section 8
	Section 9
	Section 10
	NO WARRANTY
	Section 12

