
The guitar package∗

Martin Väth†‡

2013/11/26

Abstract

This package allows you to typeset guitar chords over song texts.

This package requires the toolbox package. To typeset graphical chords,

you need an additional package like e.g. gchords.sty, available from

http://www.damtp.cam.ac.uk/user/kp229/gchords/

This is not the only package available for typesetting guitar songs. The follow-
ing packages are also available (and possibly also others: I do not claim that this
list is complete).

1. gchords.sty; http://www.damtp.cam.ac.uk/user/kp229/gchords/

2. songbook.sty; http://www.rath.ca/Misc/Songbook/
(or on CTAN: macros/latex/contrib/supported/songbook/)

3. guitarTEX (which is not a ‘pure’ (La)TEXsolution):
http://rz-home.de/~jmiltz/guitartex/

The packages 1. and 2. have somewhat different intentions. It should be possible
to combine them with the current package without any severe problems.

Contents

1 Changes 2

2 Installation 2

3 Example and Usage 3

∗This package has version number 1.6, last revised 2009/03/17. The package may be dis-
tributed and/or modified under the conditions of the LaTeX Project Public License, either ver-
sion 1.3c of this license or (at your option) any later version. The latest version of this license is
in http://www.latex-project.org/lppl.txt, and version 1.3c or later is part of all distributions
of LaTeX version 2005/12/01 or later.

†martin@mvath.de
‡The author thanks Donald Arseneau <asnd@triumf.ca>, Dan Luecking

<luecking@uark.edu>, and a colleague who does not want to be named here.

1

4 Customization 5

5 Possible Problems 7

1 Changes

v1.6 (2013/11/26) Update email, clarify license. Date/version remains the same
since only commments and documentation are modified.

v1.6 (2009/03/17) Do not redefine commands on new catcodes globally. Instead
save and restore the original definition when changing catcodes. Thanks to
Heiko Oberdiek for pointing out this bug.

v1.5 (2001/08/27) Included references to other packages in documentation;
slightly modified the \typeout of the package name.

v1.4 (2001/08/27) Introduced * versions to avoid changing of catcodes in special
situation.

v1.3 (2001/08/24) Improved technique of right-alignment thanks to valuable
hints of Donald Arseneau <asnd@triumf.ca>. Introduced \ and made
\guitarFirstFlush the default.

v1.2 (2001/08/21) Right-alignment of broken lines. Added remarks about
catcode-changes in the documentation.

v1.1 (2001/08/19) First release.

2 Installation

This package should run with plain TEX, LATEX2.09, and LATEX2ε. Actually, it
should actually run with all TEX formats.

To use guitar, you have to put the file guitar.sty in a path where TEX
looks for its input files. The TEX documents using guitar need the following
modifications in their header:

• If you use LATEX2ε, put in the preamble the command

\usepackage{guitar}

• If you use LATEX2.09, use guitar as a style option, e.g.

\documentstyle[guitar]{article}

or

\documentstyle[guitar,12pt]{article}

2

• If you use some other (non-LATEX) format, you will probably have to insert
a line like

\catcode‘\@=11\input guitar.sty\catcode‘\@=12\relax

For TEX-insiders: The only LATEX-specific commands used in guitar.sty are:

• \newenvironment

• \newcommand (used only in the form \newcommand{〈command〉}{} to ensure
that 〈command〉 was not defined before)

• \newsavebox

• \newlength

• \RequirePackage

• \ProvidesPackage

• \typeout

The above commands are used only if they are defined (otherwise, the plainTEX
substitutes are used).

3 Example and Usage

The general usage is very simple:\guitarChord

\guitarChord{Bb}Really. \guitarChord{G#}Oh yes.

produces the output

B♭
Really.

G♯
Oh yes.

(in the chord, b and # always translate into ♭ resp. ♯). When you switch into
“magic” mode, you can even use [...] instead of \guitarChord{...}. E.g., in
LATEX, you can just writeguitar

\begin{guitar}

[Cm]This [Bb]is a [G#]very [Gm]simple song.

You can still use any [\TeX]macros in the chord text.

Actually, each accord reads a second argument over which it is [A]{centered}.

By default, the linefeeds in the source lead to linebreaks %

in the output, unless you put a percentage sign at the end of the line. %

If a single line gets too long, the wrapped lines are right-aligned.

To force the wrapping use \verb|\newline|\newline like here.

To stretch the first line, use \verb|\linebreak|\linebreak like here.

Two subsequent linefeeds in the source start a new verse.

3

Three or more subsequent linefeeds in the source start a new verse with a %

slightly larger space on top.

\end{guitar}

This will produce the output

Cm
This

B♭
is a

G♯
very

Gm
simple song.

You can still use any
TEX
macros in the chord text.

Actually, each accord reads a second argument over which it is
A

centered.
By default, the linefeeds in the source lead to linebreaks in the output,
unless you put a percentage sign at the end of the line. If a single line

gets too long, the wrapped lines are right-aligned.
To force the wrapping use \newline

like here.
To stretch the first line, use \linebreak

like here.

Two subsequent linefeeds in the source start a new verse.

Three or more subsequent linefeeds in the source start a new verse
with a slightly larger space on top.

Unfortunately, if the chords get too long, they may overlap. For example,

[Ebm+7]O[G#]K produces the unreadable output
E♭m+7
O
G♯
K. To avoid this, the following

solutions are supported:

1. If the token after your chord is a space, like in “a[Ebm+7] space”, this space

is stretched: a
E♭m+7

space. Note that this is different from the notation

a[Ebm+7]{ }space which produces instead: a
E♭m+7
space.

2. Inside words, you can put a _ at the end like for [Ebm+7_]O[G#]K. This

stretches the word:
E♭m+7
O

G♯
K.

3. Outside words, you can put a | at the end like for [Ebm+7|]{OK}[G#|].[C#m] :
E♭m+7
OK

G♯
.

C♯m

If the chord is short enough (compared to its argument) then the symbols | and

_ do not harm: [E|]{long} and [E_]{long}er produce
E

long and
E

longer.

You may (and in plainTEX you must) replace \begin{guitar} and \end{guitar}
by \guitarOn and \guitarOff, respectively.\guitarOn

\guitarOff

4

If you only want to put the guitar chords as above but do not like the feature
concerning the linefeeds, you can use the environment

\begin{guitarMagic}

\end{guitarMagic}

or the respective commands \guitarMagicOn and \guitarMagicOff. Similarly,guitarMagic

\guitarMagicOn

\guitarMagicOff

you can also use only the linefeed feature by the environment

\begin{guitarCr}

\end{guitarCr}

or the respective commands \guitarCrOn and \guitarCrOff.guitarCr

\guitarCrOn

\guitarCrOff

As a matter of fact, you can also e.g. use \guitarCrOff within a {guitar} en-
vironment, but then you have to use \guitarCrOn before you end the environment
to have a proper nesting of modes.

4 Customization

If you want that the first line in a broken phrase is always left-aligned (i.e. the
spaces between words are not enlarged to fill the line), enter before your line the
command

\guitarFirstLeft\guitarFirstLeft

You can switch back into the default mode with

\guitarFirstFlush\guitarFirstLeft

The output of the # and b tokens in the chords is generated by the two commands

\guitarSharp\guitarSharp

\guitarFlat.\guitarFlat

Thus, for, example the customization

\def\guitarSharp{$^{\sharp}$}

will make the chord [F#] look like F♯ (instead of the default F♯).
In a similar way, the macros

\guitarEndLine\guitarEndLine

\guitarEndPar\guitarEndPar

\guitarEndDoubePar\guitarEndDoublePar

are expanded when the song text contains one, two, or three (or more) linefeeds.
After the macro

\guitarNoChord\guitarNoChord

5

has been used, no chords are output anymore. You can make the effect local by
putting this command in a group. (\guitarNoChord redefines the macros which
are responsible for the actual output of the chords – see the description at the
end).

The command

\guitarPreAccord\guitarPreAccord

is expanded before the actual chord is typeset: You can change this definition
to e.g. modify the font used for the chord. By default, this command contains a
\strut which ensures that the lines with chords usually all have the same height.
The macro \guitarPreAccord may also use and modify the macro

\guitarAccord\guitarAccord

which contains the actual chord which is then output (you may use this feature
to e.g. calculate a modulation in \guitarPreAccord or to replace the text of
\guitarAccord by some graphic equivalent).

It is guaranteed that the macros \guitarPreAccord and \guitarAccord are
expanded precisely once. In contrast, it might happen that the argument of the
chord (i.e. the text over which the chord is put) is expanded twice. (The doubled
expansion could have been avoided, but the price were that in some cases the
TEX kerning mechanism would then fail if the argument is a syllable of some word
which is continued afterwards).

Whenever the “guitar” mode or the “linefeed” mode is turned on or off, the
corresponding macro

\guitarMagicOnHook\guitarMagicOnHook

\guitarMagicOffHook\guitarMagicOffHook

\guitarCrOnHook\guitarCrOnHook

\guitarCrOffHook\guitarCrOffHook

is expanded (for switching on, the macro is expanded even before the necessary
catcode changes are done, and for switching off, the macro is expanded after the
catcodes have been restored). In the current defaults, a group is opened and
closed in \guitarCrOnHook and \guitarCrOffHook: This is the reason why these
commands must be properly nested. (The reason for this group is that \parindent
should be changed locally).

In the current implementation, TEX forgets everything following the magic
tokens | and _ in the chord (because these symbols are intended to be the last
one in the chord). If you want to use these tokens within a chord: They loose
their magic meaning if they occur in a braced context (i.e. between { and }). If
you regularly have to use these tokens within chords, you can change the default
choice of this tokens by the respective commands

\toolboxMakeSplit{〈token〉}{guitarSplitDist}\guitarSplitDist

\toolboxMakeSplit{〈token〉}{guitarSplitMerge}.\guitarSplitMerge

6

(See the toolbox package for details of the command \toolboxMakeSplit used\toolboxMakeSplit

here). It should be pointed out that 〈token〉 may actually be a sequence of tokens,
so that for the ‘magic tokens’ | and _ you may instead use whole phrases if you
prefer.

Some fine tuning of the spacing can be done by redefining

\guitarCalcDim.\guitarCalcDim

When this macro is called, the skip register

\guitarDim\guitarDim

contains the width of the chord which should be put over the text. After
\guitarCalcDim has been expanded, it is ensured that at least \guitarDim (hor-
izontal) space is reserved for the chord. Thus, if \guitarCalcDim increases e.g.
\guitarDim by 2pt (which is the default behavior of \guitarCalcDim), then 2pt

more space is reserved for the chord than its actual size: This ensures that two
subsequent chords are always separated by some space.

Finally, you can modify the macros which do the actual setting of the chords:
This setting is done by the commands

\guitarPut\guitarPut

\guitarPutOnSpace\guitarPutOnSpace

\guitarPutDist\guitarPutDist

\guitarPutMerge\guitarPutMerge

which with the exception of \guitarPutOnSpace all expect one argument (namely
the text on which they should be put). The command \guitarPutOnSpace is
called, if a space followed the chord argument. Similarly, \guitarPutDist and
\guitarPutMerge are called if the chord argument ended with the magic symbol
| respectively _.

Before one of the above four macros is called, the chord text is stored in the
macro \guitarAccord (and has not been expanded to this time); also the ar-
gument has not been expanded to this time. The above four macros are also
responsible for the appropriate expansion (also of the expansion of the macros
\guitarCalcDim and \guitarPreAccord, if the latter should still keep their mean-\guitarCalcDim

\guitarPreAccord ing). The above four macros may freely use the skip register \guitarDim and the
\guitarDim box register \guitarBox (which are both not used or modified by the other macros
\guitarBox of this package).

5 Possible Problems

The special treatment of [# b and 〈linefeed〉 is implemented by a changing of
catcodes. This may cause essentially two sorts of problems:

1. In some cases, you will want to avoid the automatic replacement of # and
b. For example, in [\textbf{F#}] or in \guitarChord{\textbf{F#}} the
b of \textbf gets replaced which is of course not what you want. To

7

avoid this replacement, there is a * version of the respective commands,
i.e. the above example works in the intended way if you write instead
[*\textbf{F\guitarSharp}]or \guitarChord*{\textbf{F\guitarSharp}}
(you have to use the command \guitarSharp, because due to the * also the
would not be replaced).

2. There are some situations in which catcodes are set too early, e.g. if you
use the macros within the argument of certain macros. In this case, these
symbols keep their usual TEX meaning (which may either lead to an error
in case of # (and sometimes [) or just to a false output). If this happens to
you, you have to replace at the corresponding place the above one-symbol
shortcuts by their longer macro equivalents. In other words: You might
have to replace in certain special situations some occurrences of the symbols
according to the following table:

[...] → \guitarChord{...}

→ \guitarSharp

b → \guitarFlat

linefeed → \guitarEndLine

2 linefeeds → \guitarEndPar

3+ linefeeds → \guitarEndDoublePar

8

