
labbook.cls, a LATEX class to typeset laboratory

journals

Frank Küster

2003/05/20

Abstract

This class is designed to typeset laboratory journals with LATEX that
contain chronologically ordered records about experiments. Each day, the
new pages are simply added at the end, and from the sectioning com-
mands, an experiment index is generated to make it easier to find a par-
ticular experiment. Because \frontmatter has roman page numbering, it
is easy to separately extend index, toc and list of abbreviations. The class
is based on the KOMA-Script class scrbook.cls. Therefore all features
of this class can be used – reading of scrguide (german) or scrguien

(english), the documentation of KOMA-Script, is highly recommended.

Contents

I User documentation 3

1 General information 3
1.1 Legal considerations . 3
1.2 Features . 3

2 Usage 4
2.1 Initialization . 4

3 Sectioning commands 4
3.1 \labday . 4
3.2 \experiment and \subexperiment: The simple usage 4
3.3 Advanced Usage: Experiment Abbreviations 5
3.4 Fancy stuff: Multiple index entries for experiments 5

4 Example 6

II Implementation 6

5 Initialization 6
5.1 Options . 6
5.2 Load the makeidx package . 7

6 Experiment abbreviations 7

7 Defining internal macros 8
7.1 Macros for argument parsing . 9

7.1.1 Parsing a comma separated list 9
7.1.2 Parsing lists in the optional argument 11
7.1.3 Building and using the list of index entries 13

7.2 Checking for abbreviation usage 14
7.3 Closing the index entries . 15

8 Defining the new sectioning commands 16
8.1 Defining experiment . 16

8.1.1 \experiment without optional argument 17
8.1.2 \experiment with an optional argument 18

8.2 Defining \subexperiment . 20
8.3 Defining labday . 23
8.4 Adjusting the definition of part 23
8.5 Adjusting subsubsection . 23
8.6 Section numbering, floats and the table of contents 24

9 Building the index 24
9.1 Redefining addcontentsline . 24
9.2 Making sure the last index range is closed 25

10 hyperref compatibility macros 26

2

Part I

User documentation

1 General information

1.1 Legal considerations

Writing of laboratory journals is sometimes regulated by law, often funding
institutions have additional requirements. Thus it is usually not allowed to
keep a lab journal in electronic form only; sometimes even hardcover books
have to be used. On the other hand it seems to be common practice to keep
notes on loose leafes, computer files or a jotter book and compile them in the
hardcover lab journal in a more or less regular manner.

Therefore it seems tenable to work with an electronic version of the journal
and a printout in parallel. If required, the printout can be clipped or bound,
and a version on a CD-ROM should have equal value as evidence as a book. On
the other hand, one gains a lot, especially with a PDF version: full text search,
easy inclusion of graphs and pictures, possibility of hyperlinking to data files
etc.

1.2 Features

basis class labbook.cls is based on the KOMA-Script-class scrbook.cls.
Therefore it offers all the features of this class: changing the page lay-
out, head- and footlines, paragraph markup, and changing appearance of
floats and margin notes. It is highly recommended to read the documen-
tation, scrguien.

Sectioning The lab journal is structured in a chronological way. Instead of
\chapter, \labday is used. Within a day the text is sectioned according
to experiments – this can be a complete measurement from design to eval-
uation, but also one test in a series that takes several days. \experiment
is on the level of section, and there is \subexperiment which corresponds
to \subsection. Below that, the usual sectioning commands can be used
(although their usage doesn’t seem very sensible to me, mind KOMA-
script’s \minisec command).

Index and table of contents Because of the chronological structure, a tra-
ditional table of contents is not sufficient, especially if investigations in a
series of experiments are conducted on different days. Therefore, an index
is created. It is built from the toc entries of the sectioning commands.
One can also define abbreviations to use in the argument of \experiment
and \subexperiment. Thus, the consistent creation of the index is much
easier. Furthermore, you can create multiple index entries for one experi-
ment.

3

hyperref integration The class works together well with hyperref.sty to
produce PDF files with navigation features.

2 Usage

2.1 Initialization

If you want to use hyperref.sty, you must specify the class option hyperref like
this

\documentclass[hyperref]{labbook}

after that you can load hyperref and other packages in the order appropriate for
your document. If you load hyperref.sty without giving the option, hyperref will
overwrite some changes this class makes to LATEX internals. If you use hyperref,
you should also consider the KOMA option idxtotoc: The index will not only
be listed in the table of contents, but also in the PDF bookmarks.

Besides that, all options you specifiy are just handed on to scrbook.cls.
You might want to use openany to allow new labdays to begin on any page.

3 Sectioning commands

3.1 \labday
labday can be used to create an unnumbered heading formatted like a chapter.\labday

Its text is put into the table of contents and used as running title – usually
one would just use the date, perhaps with the weekday. It should be used only
within mainmatter and will take care of index entries for the lower sectioning
levels (see below). It calls \addchap internally, there is no starred form or
optional argument to \labday.

3.2 \experiment and \subexperiment: The simple usage

Within a \labday, numbered headlines for single experiments can be created\experiment

with

\experiment[<short form>]{long form}

Its text (or that of the optional argument) is not only typeset in the table
of contents and page head, but also in the index. This eases the orientation,
particularly if experiments are done several times or take longer than one day.
The index entries specify the page range of the whole experiment, not only the
starting page; and if the same experiment is repeated on different days that fall
on subsequent pages, one common index range is generated.

Note that you cannot use commas1 in the optional argument (see below). If
you have to, enclose the optional argument in additional curly braces:

1In fact, the string @--@ is not allowed, too – see the implementation notes below.

4

\experiment[{one, two, three}]{The one, the two and the three}

Below \experiment you can use \subexperiment which works in the same\subexperiment

way and produces sub-indexentries. It is intended for sections like “design,
realization, evaluation” or “preparation, purification, measurement”.

3.3 Advanced Usage: Experiment Abbreviations

If one uses slightly different wording (or spelling) in two occurences of the same\newexperiment

experiment, they will get different index entries. To avoid this, one can define
abbreviations for frequently used experiment headlines, toc and index entries.
This is done with the macro

\newexperiment{<abbrev>}[<short form>]{<long form>}
Here, <abbrev> is the abbreviation that can be given later to make LATEX

use the <long form> and <short form>. The short form is for index, table of
contents and running title, and giving it is optional. When using the abbre-
viation, specify it without prepending a backslash, i.e. \experiment{abbrev}.
Abbreviations may contain any char except the backslash, the tilde (˜), commas
and spaces.

For \subexperiment, there is an analogous macro, \newsubexperiment.\newsubexperiment

If you try to define an abbreviation that has already been used, you will get
an error message. You can use the same abbreviation for one experiment and
one subexperiment entry (although doing this may cause confusion, not to TeX,
but to you). If you leave out the optional argument, the long form is also used
for index and table of contents.

Usually you just type \experiment{abbrev}, but you can also combine a
varied text in the long form with an abbreviation in the optional argument:
\experiment[abbrev]{varied text}, to make sure the index stays simple.
You cannot use a free text optional argument with an abbreviation in the
mandatory argument (because the abbreviation yet has an associated index
entry). But it is, in principle, possible to use two different abbreviations in
optional and mandatory argument - but only as long as both yield the same
index entry.

3.4 Fancy stuff: Multiple index entries for experiments

Sometimes one performs corresponding working steps of different experiments
in parallel – this complicates index entries. Consider that by some screening
method you have identified the substances A152 and B96 from a combinatorial
library as promising drugs against some disease. The next things to do is to
verify their exact structure, composition or sequence and establish a medium-
scale preparation protocol for further characterization. Probably you can save
time by doing some of these steps in parallel, but you will end up with index
entries like “A152 and B96, sequencing” – and two months later you will have to
remember wether you sequenced B96 together with A152 or rather, the following

5

week, with A43 and C12. Therefore it would be nice to get two index entries
for the experiment “Sequencing of A152 and B96”, namely “A152, sequencing”
and “B96, sequencing”. And you can have exactly that.

In fact the syntax for both \experiment and \subexperiment allows for a\experiment

\subexperiment comma separated list in the optional argument. The first element will be used for
table of contents and page head, and the following elements will produce index
entries. Suppose you have defined the abbreviations A152-seq and B96-seq, you
can thus say:

\experiment[Sequencing of A152 and B96, A152-seq, B96-seq]{Sequencing

of inhibitor candidates A152 and B96}

and get what you want. Spaces before and after the commas will be ignored.
You’re free to use abbreviations or free text anywhere, but for the index entries
only abbreviations really make sense.

4 Example

For further explanation, please refer to the example file examplen.tex that is
generated by

latex labbook.ins

Part II

Implementation
1 〈∗labbook〉

5 Initialization

5.1 Options

Some packages the user might use have to be loaded before hyperref, so this class
cannot load it internally. However, we have to take care of it because of two rea-
sons: One is that we need to provide it with some macros for our new sectioning
levels, the more important is that we cannot redefine \addcontentsline before
hyperref has done it. But we can’t simply delay this until after hyperref has
been loaded, since this might never occur.

Therefore the user has to specifiy wether she intends to use it, using the
option hyperref.

2 \newif\ifwe@use@hyperref\we@use@hyperreffalse

3 \DeclareOption{hyperref}{\we@use@hyperreftrue}

6

The rest is just passed to scrbook.cls:

4 \DeclareOption*{\PassOptionsToClass{\CurrentOption}{scrbook}}

5 \ProcessOptions\relax

6 \LoadClass{scrbook}

5.2 Load the makeidx package

7 \RequirePackage{makeidx} \makeindex

6 Experiment abbreviations

To facilitate the creation of the index (specifically to avoid that little differences
or typos mess it up), the user may define abbreviations for his experiment (and
subexperiment) headings. This can be done using the macro \newexperiment.
It’s first argument is the abbreviation, then comes an optional short form for
index entries, table of contents and running titles. Last comes the mandatory
title argument.

Then we check wether \newexperiment has been called with an optional
argument, and call the respective commands. \@ifnextchar looks for the first
character after the first argument, and keeps it. Thus, the following macros get
the same arguments that \newexperiment had.

8 \def\newexperiment#1{%

9 \@ifnextchar [{\opt@arg@newexperiment{#1}}%

10 {\nopt@arg@newexperiment{#1}}%]

11 }

The long and short forms for abbrev are assigned to \long@<abbrev> and
\short@<abbrev> , respectively. After checking wether abbrev has not yet been
used, the second argument is assigned to the long and short form for the case
when there was no optional argument. In case of an optional argument, this is
used for the short form.

12 \def\nopt@arg@newexperiment#1#2{%

13 \@ifundefined{long@exp@#1}{%

14 \@namedef{long@exp@#1}{#2}%

15 \@namedef{short@exp@#1}{#2}%

16 }{%

17 \ClassError

18 {labbook}

19 {experiment abbreviation yet defined}

20 {The abbreviation for an experiment that you wanted to define

21 with this command has already been defined.}%

22 }

23 }

24 \def\opt@arg@newexperiment#1[#2]#3{%

25 \@ifundefined{long@exp@#1}{%

26 \@namedef{long@exp@#1}{#3}%

27 \@namedef{short@exp@#1}{#2}%

28 }{%

7

29 \ClassError

30 {labbook}

31 {experiment abbreviation yet defined}

32 {The abbreviation for an experiment that you wanted to define

33 with this command has already been defined.}%

34 }

35 }

The same is done for \subexperiment. Any subexperiment abbreviation
may be used within any experiment.

36 \def\newsubexperiment#1{%

37 \@ifnextchar [{\opt@arg@newsubexperiment{#1}}%]

38 {\nopt@arg@newsubexperiment{#1}}%

39 }%

40 \def\nopt@arg@newsubexperiment#1#2{%

41 \@ifundefined{long@subexp@#1}{%

42 \@namedef{long@subexp@#1}{#2}%

43 \@namedef{short@subexp@#1}{#2}%

44 }{%

45 \ClassError

46 {labbook}

47 {experiment abbreviation yet defined}

48 {The abbreviation for an experiment that you wanted to define

49 with this command has already been defined.}%

50 }%

51 }%

52 \def\opt@arg@newsubexperiment#1[#2]#3{%

53 \@ifundefined{long@subexp@#1}{%

54 \@namedef{long@subexp@#1}{#3}%

55 \@namedef{short@subexp@#1}{#2}%

56 }{%

57 \ClassError

58 {labbook}

59 {experiment abbreviation yet defined}

60 {The abbreviation for an experiment that you wanted to define

61 with this command has already been defined.}%

62 }%

63 }%

Note that the usage is \experiment{abbrev}, not \experiment{\abbrev}

7 Defining internal macros

We first define some internal helper macros that we will use for different pur-
poses.

8

7.1 Macros for argument parsing

7.1.1 Parsing a comma separated list

The new sectioning commands can be used with a comma separated list of
items in the optional argument (see below, 8.1.2), and we will be constructing
a similar list if there is one more index entry for one sectioning command. To
parse this list, we use code that is essentially taken from keyval.sty (page 4
in its manual).

First we need some helper macros. \FK@@sp@def defines the control sequence
in its first argument to expand to its second argument, but with any leading or
trailing whitespace removed.

64 \def\@tmpA#1{%

65 \def\FK@@sp@def##1##2{%

66 \futurelet\FK@tempa\FK@@sp@d##2\@nil\@nil#1\@nil\relax##1}%

67 \def\FK@@sp@d{%

68 \ifx\FK@tempa\@sptoken

69 \expandafter\FK@@sp@b

70 \else

71 \expandafter\FK@@sp@b\expandafter#1%

72 \fi}%

73 \def\FK@@sp@b#1##1 \@nil{\FK@@sp@c##1}%

74 }%

75 \def\FK@@sp@c#1\@nil#2\relax#3{\FK@toks@{#1}\edef#3{\the\FK@toks@}}%

76 \newtoks\FK@toks@%

77 \@tmpA{ }%

Now we define a way to parse the optional argument and break it at every
comma. \fk@getcommasep@list is a wrapper macro. It executes its first argu-
ment once before the list is read, assigns its further arguments to actions that will
be done while going through the list, and then calls \fk@@getcommasep@list
which takes as its argument the first element of the list after it, i.e. everything
up to the first comma. It then works through the previously defined actions
with this element and then calls itself recursively, taking the next element as
its argument. \fk@getcommasep@list has to be called with <list>,\relax,.
Therefore, when all elements of the list have been used, \relax is the next, and
the recursion ends.

78 \newcounter{fk@commasep@argnumber}%

79 \def\fk@getcommasep@list#1#2#3#4#5#6{%

80 \setcounter{fk@commasep@argnumber}{0}%

81 #1

82 \def\fk@commasep@beforebranch{#2}%

83 \def\fk@commasep@firstelement{#3}%

84 \def\fk@commasep@furtherelements{#4}%

85 \def\fk@commasep@afterlastelement{#5\empty}%

86 \def\fk@commasep@aftereachelement{#6}%

87 \fk@@getcommasep@list

88 }

89 \def\fk@@getcommasep@list#1,{%

9

90 \stepcounter{fk@commasep@argnumber}%

91 \fk@commasep@beforebranch%

92 \ifx\relax#1%

93 \fk@commasep@afterlastelement%

The counter has been incremented, and if we are already after the last el-
ement (so the argument was \relax), then \fk@commasep@afterlastelement
(the fifth argument to the wrapper macro) is executed.

The \else-branch means we have a real list element. We assign it (with
whitespace removed) to \fk@commasep@arg. Then we check the counter wether
we are working with the first element of the list, or with subsequent elements,
and execute the respective commands (arguments number 3 and 4 to the wrap-
per macro).

94 \else%

95 \FK@@sp@def\fk@commasep@arg{#1}%

96 \ifnum\c@fk@commasep@argnumber=1%

97 \fk@commasep@firstelement%

98 \else%

99 \fk@commasep@furtherelements%

100 \fi%

After that, the sixth argument is executed which has been assigned to
\fk@commasep@aftereachelement, and the macro calls itself again to take the
next element.

101 \fk@commasep@aftereachelement%

102 \expandafter\fk@@getcommasep@list%

103 \fi%

104 }

Index entries for a sectioning level may contain commas, therefore using a
comma separated list for them is not a good idea. We just copy the above
definitions, but use @--@ as the delimiter. Should you ever have to use this in
an index entry, you need to define a command that typesets it and put this
command in your optional argument, or the abbreviation definition.

105 \newcounter{fk@atdashsep@argnumber}%

106 \def\fk@getatdashsep@list#1#2#3#4#5#6{%

107 \setcounter{fk@atdashsep@argnumber}{0}%

108 #1

109 \def\fk@atdashsep@beforebranch{#2}%

110 \def\fk@atdashsep@firstelement{#3}%

111 \def\fk@atdashsep@furtherelements{#4}%

112 \def\fk@atdashsep@afterlastelement{#5\empty}%

113 \def\fk@atdashsep@aftereachelement{#6}%

114 \fk@@getatdashsep@list

115 }

116 \def\fk@@getatdashsep@list#1{%

117 \stepcounter{fk@atdashsep@argnumber}%

118 \fk@atdashsep@beforebranch%

119 \ifx\relax#1%

10

120 \fk@atdashsep@afterlastelement%

121 \else%

122 \FK@@sp@def\fk@atdashsep@arg{#1}%

123 \ifnum\c@fk@atdashsep@argnumber=1%

124 \fk@atdashsep@firstelement%

125 \else%

126 \fk@atdashsep@furtherelements%

127 \fi%

128 \fk@atdashsep@aftereachelement%

129 \expandafter\fk@@getatdashsep@list%

130 \fi%

131 }

7.1.2 Parsing lists in the optional argument

Now we define a macro that uses \fk@getcommasep@list to parse the comma
separated list in the optional argument of \experiment and \subexperiment
(see 8.1.2). Its only declared argument is the sectioning level specifier (exp
or subexp), but it should be called with the comma separated list (ending
with \relax,) following the specifier. This specifier is stored in the macro
\fk@explevel to make its usage more clear.

First \ifmore@thanone@item is defined. It will be used to conditionally
trigger actions after the last element. Before starting to iterate over the list, i.e.
in the first argument to \fk@getcommasep@list, we set this to false.
132 \newif\ifmore@thanone@item%

133 \def\fk@parse@optarg{%

134 \fk@getcommasep@list{%

135 \more@thanone@itemfalse%

136 }{%

137 }{%

There’s nothing to be done on every iteration before branching, so the second
argument to \fk@getcommasep@list is empty. The third is executed for the first
element in the list. We simply define the macro \fk@current@tocentry as this
first element for later use. \@onelevel@sanitize changes \fk@commasep@arg
to consist only of strings, not command sequences. This is necessary because
hyperref will give an error with certain command sequences in bookmarks etc,
e.g. with \textit which expands to \protect\textit. Wether this item will
only be used for the toc and running title, or wether it additionally is put into
the index (namely if there is only this first argument) cannot be decided now.
138 \@onelevel@sanitize{\fk@commasep@arg}%

139 \protected@edef\fk@current@tocentry{\fk@commasep@arg}%

140 }{%

If there is at least a second element2, we set \ifmore@thanone@item to
2note that it doesn’t make sense to use a list with two elements - there will be only one

index entry, so you can just as well use only one. The only difference will be that you get
the possibility to have different wording in the index entry and the toc entry and the section
heading, which I would try to avoid.

11

true, then assign the currently processed list element to \fk@currentarg, ap-
pending a space only after we have made sure there will be no problems with
fragile commands. Then we check wether it is an abbreviation for the current
sectioning level. According to the result, we create the text to put in the in-
dex (\fk@current@arg itself or the text the abbreviation stands for). Then we
call \fk@buildindexlist (see below) with it to add it to the index list for the
current sectioning commands.

141 \more@thanone@itemtrue%

142 \protected@edef\fk@currentarg{\fk@commasep@arg}%

143 \@onelevel@sanitize{\fk@currentarg}%

144 \protected@edef\fk@currentarg@withspace{\fk@currentarg\space}%

145 \expandafter\fk@checkifabbrev@arg%

146 \fk@currentarg@withspace&{long@\fk@explevel}%

147 \ifabbrev@defined%

148 \expandafter\protected@edef%

149 \csname fk@current@\fk@explevel name\expandafter%

150 \endcsname{%

151 \csname short@\fk@explevel @\fk@currentarg\endcsname}%

152 \fk@buildindexlist{%

153 \csname short@\fk@explevel @\fk@currentarg\endcsname}%

154 \else%

155 \expandafter\protected@edef%

156 \csname fk@current@\fk@explevel name\endcsname{%

157 \fk@currentarg}%

158 \expandafter\fk@buildindexlist{\fk@currentarg}

159 \fi%

160 }{%

After the last element, the procedure of sanitizing, space appending and
abbreviation checking is repeated. Because this is done after the last element,
the result of the check will not be overwritten by other index elements. If there
was only one element in the optional argument, we have to add the content of
\fk@current@tocentry to the (still empty) indexlist.

In this case, there is nothing to be done after each processed list element, so
the last argument to \fk@getcommaseplist is empty.

161 \protected@edef\fk@currentarg{\fk@current@tocentry}%

162 \@onelevel@sanitize{\fk@currentarg}%

163 \protected@edef\fk@currentarg@withspace{\fk@currentarg\space}%

164 \expandafter\fk@checkifabbrev@arg%

165 \fk@currentarg@withspace&{long@\fk@explevel}%

166 \ifmore@thanone@item\else%

167 \ifabbrev@defined%

168 \fk@buildindexlist{%

169 \csname short@\fk@explevel @\fk@currentarg\endcsname}%

170 \else%

171 \expandafter\fk@buildindexlist{\fk@currentarg}%

172 \fi%

173 \fi%

12

174 }{%

175 }%

176 }

7.1.3 Building and using the list of index entries

The text to be indexed for every sectioning command is kept in a comma sep-
arated list, even if there is only one element. This list is build by prepend-
ing the new element to the expansion of the list. First, the lists (for experi-
ments and subexperiments) are defined (as empty lists). The macros that call
\fk@buildindexlist have to properly set \fk@explevel to exp or subexp, so
that the new element gets into the right list.

177 \def\fk@exp@indexlist{}%

178 \def\fk@subexp@indexlist{}%

179 \def\fk@buildindexlist#1{%

180 \def\@tmpA{exp}

181 \ifx\fk@explevel\@tmpA

182 \protected@edef\fk@exp@indexlist{#1\fk@exp@indexlist}

183 \else

184 \protected@edef\fk@subexp@indexlist{#1\fk@subexp@indexlist}

185 \fi

186 }

To write index entries for each list element, we use \fk@getcommasep@list
again. Here there is no difference between first and further elements, so we
just define commands in the sixth argument, which is processed once for every
element. The list never contains abbreviations, but always the text itself, so we
just call \fk@@writeindex with the element.

187 \def\fk@useindexlist{%

188 \fk@getatdashsep@list{}{}{}{}{}{%

189 \fk@@writeindex{\fk@atdashsep@arg}%

190 }%

191 }%

\fk@@writeindex handles the differences in index writing for experiments
and subexperiments. If a new experiment is started (or closed), then an index
for every list element has to be written:

192 \def\fk@@writeindex#1{%

193 \def\@tmpA{exp}%

194 \ifx\fk@explevel\@tmpA%

195 \fk@writeindex{#1}%

196 \else%

If we are writing index entries for a subexperiment, things get more com-
plicated, because the experiment and the subexperiment might have more
than one associated index entry. Therefore we have to iterate over both
\fk@exp@indexlist and \fk@subexp@indexlist. To achieve this, for a
subexperiment (where \fk@explevel is subexp), \fk@useindexlist will be

13

called with \fk@exp@indexlist, and \fk@parselevel is set to exp. When
\fk@openindex is called with explevel subexp, but parselevel exp, its argument
is assigned to \fk@current@expname, the parselevel is changed to subexp, and
\fk@useindexlist is called again with \fk@subexp@indexlist. When doing
this, \fk@openindexwill be called again, but since now the parselevel is subexp,
we get into the other branch. After processing \fk@subexp@indexlist is fin-
ished, we have to continue processing the next elements in \fk@exp@indexlist.
Therefore we reset the parselevel to exp.

197 \ifx\fk@parselevel\@tmpA% we are iterating over the current list

198 % of experiments

199 \protected@edef\fk@current@expname{#1}

200 \def\fk@parselevel{subexp}

201 \expandafter\fk@useindexlist\fk@subexp@indexlist\relax%

202 \def\fk@parselevel{exp}

203 \else

When processing the subexperiment’s index list, we get into this branch, and
now for every subexperiment index element an entry is made for the current
meaning of \k@current@expname.

204 \fk@writeindex{\fk@current@expname!#1}%

205 \fi

206 \fi%

207 }%

The previous procedure made use of \fk@writeindex which is never defined
itself. It is \let to \fk@openindex or \fk@closeindex, depending on where it is
called. The first writes index entries which open a range, i.e. \index{text|(},
the second closes the ranges again (\index{text|)}).

208 \def\fk@openindex#1{\index{#1|(}}%)

209 \def\fk@closeindex#1{\index{#1|)}}%)

7.2 Checking for abbreviation usage

The next few macros are used to check wether an abbreviation or a text was
used as the argument of \(sub)experiment. First a little helper macro:

210 \def\muST@bE@emPTy{\message{Numquam videbor}}%

\fk@checkifabbrev@arg is defined so that its first argument ends with a
space and the second only at the &-sign; it is called with a space appended to
the item to check. Thus, if the second argument isn’t empty, there was a space
in the item itself, and it cannot be an abbreviation. If the second argument is
empty, we check wether we have an abbreviation using \fk@checkfirst:

211 \newif\ifabbrev@defined%

212 \def\fk@checkifabbrev@arg #1 #2{%

213 \ifx\muST@bE@emPTy#2\muST@bE@emPTy%

214 \protected@edef\@tmpA{#1\space}%

215 \expandafter\fk@checkfirst\@tmpA{#3}%

14

216 \else%

217 \abbrev@definedfalse%

218 \fi%

219 }%

The first argument of \fk@checkfirst ends at the first space - note that
\fk@currentarg was defined with a space appended. This is necessary because
we have to be able to cut \fk@currentarg in words, not in single characters.
The second argument to \fk@checkfirst specifies the level we are on (experi-
ment or subexperiment).

The macro now checks wether the requested abbreviation has been defined,
and sets the conditional accordingly:

220 \def\fk@checkfirst #1 #2{%

221 \@ifundefined{#2@#1}{\abbrev@definedfalse}{\abbrev@definedtrue}%

222 }%

7.3 Closing the index entries

This macro, \fk@close@labindex, will be used in a couple of circumstances
to close open index ranges. First we make \fk@writeindex produce entries
that close the index ranges. If there has been no experiment on the current
\labday, then \fk@explevel is undefined, and we don’t do anything. Other-
wise the experiment level is determined, and \fk@@close@labindex is called
appropriately.

223 \def\fk@close@labindex{%

224 \let\fk@writeindex\fk@closeindex%

225 \@ifundefined{fk@explevel}{}{%

If \fk@explevel is exp, then we need to close any open experiment and
subexperiment index ranges. We first handle the subexperiment. Before we call
the macro that does it, we set \fk@explevel to subexp and \fk@parselevel
to exp, as required by \fk@@writeindex (see 7.1.3), and after that we reset it
to exp to close the experiment ranges themselves. If \fk@explevel is subexp,
however, we just call the closing macro:

226 \def\@tmpA{exp}%

227 \ifx\fk@explevel\@tmpA%

228 \def\fk@parselevel{exp}%

229 \def\fk@explevel{subexp}%

230 \fk@@close@labindex%

231 \def\fk@explevel{exp}%

232 \fk@@close@labindex%

233 \else%

234 \fk@@close@labindex%

235 \fi%

236 }%

237 }%

15

\fk@@close@labindex calls \fk@useindexlist – always with the argument
\fk@exp@indexlist – and then flushes the list for the current explevel.

238 \def\fk@@close@labindex{%

239 \expandafter\fk@useindexlist\fk@exp@indexlist\relax%

240 \expandafter\def\csname fk@\fk@explevel @indexlist\endcsname{}%

241 }

8 Defining the new sectioning commands \labday
and \(sub)experiment

First we define the counters. Footnote numbers are reset every day.

242 \newcounter{labday}

243 \newcounter{experiment}[labday]

244 \newcounter{subexperiment}[experiment]

245 \@addtoreset{footnote}{labday}

If somebody uses \subsubsection, this has to be reset properly. The marks
have to be let to \@gobble initially:

246 \@addtoreset{subsubsection}{subexperiment}

247 \let\experimentmark\@gobble

248 \let\subexperimentmark\@gobble

The level of sections is designed to be used to classify an experiment. The
level below that, usually subsection, is redefined as \subexperiment. It should
be used for things like “rationale”, “preparations”, or “evaluation”, or the like,
and will also get into the toc and index:

249 \setcounter{tocdepth}{3}

Thus, chapters, sections and subsections go into the toc besides labdays,
experiments and subexperiments, but this should only be used for things in
\frontmatter or at the start of \mainmatter.

Besides that, nothing is done in this class to format table of contents and
index. This can be done individually with different packages on CTAN.

8.1 Defining experiment

250 \def\experiment{%

The first thing we do is close the index entry for the preceding \experiment
and \subexperiment. Thus, this will be done before a potential page break.
The macro \fk@close@labindex will be defined later, see 7.3. Then we set
\iflower@sectionlevel to false – this might have been set true by a previ-
ously used \subsubsection, were no indexing should be done.
251 \def\fk@explevel{exp}

252 \fk@close@labindex%

253 \lower@sectionlevelfalse%

16

One can use the unstarred form with abbreviations, and with free text, too.
However, if there is more than just text in the free text, e.g. a command like
\textit{...}, then there will be an error message from TEX which is hard to
understand. Therefore it is strongly recommended to use free text only with
the starred form.

We descriminate between the starred and unstarred forms and first define
the unstarred version: It checks wether there is an optional argument in square
brackets and calls the respective macros:
254 \@ifstar{\@sexperiment}{\@experiment}%

255 }

256 \def\@experiment{%

257 \@ifnextchar [{\opt@arg@experiment}{\nopt@arg@experiment}%

258 }

8.1.1 \experiment without optional argument

First the case of no optional argument is defined. Either the one argument is
an abbreviation as defined by the user command \newexperiment, or it is of
free form. Checking which is not straightforward, because we cannot simply
put a whole sentence, possibly with markup macros, into an \@ifundefined-
command.
259 \def\nopt@arg@experiment#1{%

260 \def\fk@currentarg{#1 }\@onelevel@sanitize{\fk@currentarg}%

261 \expandafter\fk@checkifabbrev@arg\fk@currentarg&{long@exp}%

The first line in the definition has the effect that \fk@currentarg contains
the argument text, but everything is read as text, not as a macro, even if it looks
like it. Then \fk@checkifabbrev@arg is called with this string of characters
and (possibly) spaces as an argument and an arbitrary delimiter, here &. This
macro, defined below, changes the conditional \ifabbrev@defined.
262 \ifabbrev@defined%

The case with an abbreviation, so we have to manually assign short and
long forms for \@startsection, and make sure that the short form gets into
the index. Indexing is done by calling \fk@buildindexlistwith the meaning of
the abbreviation. It will automatically used by \addcontentsline. The actual
arguments for \@startsection are just a copy of the \section-definition from
scrbook.cls.
263 \fk@buildindexlist{\csname short@exp@#1\endcsname}%

264 \@startsection{experiment}{1}{\z@}%

265 {-3.5ex \@plus -1ex \@minus -.2ex}%

266 {2.3ex \@plus.2ex}%

267 {\raggedsection\normalfont\sectfont\nobreak\size@section\nobreak}%

268 [\@nameuse{short@exp@#1}]{\@nameuse{long@exp@#1}}%

269 \else%

\else is the case where the user just uses the free form (or mistyped the
abbreviation - but that will show up in the dvi/pdf file). \@startsection will
\@dblarg the parameter itself.

17

270 \expandafter\fk@buildindexlist{\fk@currentarg}

271 \@startsection{experiment}{1}{\z@}%

272 {-3.5ex \@plus -1ex \@minus -.2ex}%

273 {2.3ex \@plus.2ex}%

274 {\raggedsection\normalfont\sectfont\nobreak\size@section\nobreak}%

275 {#1}%

276 \fi%

277 }%

8.1.2 \experiment with an optional argument

Now comes the case where \experiment was called with an optional argument.
The optional argument may consist of

• One arbitrary sentence with formatting without commas, or

• one previously defined abbreviation, or

• a comma separated list of items. The items should usually be abbrevia-
tions, the first may be an arbitrary sentence (with formatting).

In the latter case, the first one is used for the table of contents and the running
title, but not for the index; the following are put in the index. All this is
achieved by calling \fk@parse@optarg, after setting its parselevel to exp.

278 \def\opt@arg@experiment[#1]#2{%

279 \fk@parse@optarg#1,\relax,%

The checks regarding abbreviations get more complicated here, we have
to check the first item in the optional argument – this is done by the macro
\fk@parse@optarg –, and the long argument.

280 \ifabbrev@defined%

281 \def\fk@currentarg{#2 }\@onelevel@sanitize{\fk@currentarg}%

282 \expandafter\fk@checkifabbrev@arg\fk@currentarg&{long@exp}%

283 \ifabbrev@defined%

This is the strange, but working case with two predefined forms. We have to
check wether they are equal. In fact the user may use different abbreviations as
long as the short forms expand to the same index/toc entry.

The check works like this: The first \expandafter delays the \ifx condi-
tional until the next token, \csname, has been expanded. Expansion of \csname,
however, scans for an \endcsname, but before it gets there (to the first one),
it encounters the second \expandafter. Therefore, first the last \csname is
expanded, yielding the macro \short@exp@<second-abbrev>, then the first is
expanded, and we get
\ifx\short@exp@<first-abbrev>\short@exp@<second-abbrev>.

284 \expandafter\ifx%

285 \csname short@exp@\fk@current@tocentry\expandafter%

286 \endcsname\csname short@exp@#2\endcsname%

287 \@startsection{experiment}{1}{\z@}%

18

288 {-3.5ex \@plus -1ex \@minus -.2ex}%

289 {2.3ex \@plus.2ex}%

290 {\raggedsection\normalfont\sectfont\nobreak\size@section\nobreak}%

291 [\@nameuse{short@exp@\fk@current@tocentry}]%

292 {\@nameuse{long@exp@#2}}%

293 \else%

294 \ClassError

295 {labbook}

296 {index entry and experiment title don’t match}

297 {%

298 You have used \protect\experiment\space with an

299 optional argument, and used abbreviations

300 \MessageBreak both in the optional argument

301 (the first item in square brackets, for the index

302 and toc\MessageBreak entries) and the mandatory

303 argument (in curly braces, for the experiment title

304 in the text). This is only possible if both would

305 yield the same index/toc\MessageBreak

306 entries. However, you requested the index

307 entry\MessageBreak

308 \@nameuse{short@exp@\fk@current@tocentry}

309 \MessageBreak

310 but the title corresponds to index entry\MessageBreak

311 \@nameuse{short@exp@#2}}%

312 \fi%

313 \else%

This is the working case with a predefined short form and a free long form.
We warn the user - she might have accidentaly chosen the abbreviation:
314 \ClassWarning{labbook}

315 {Using a pre-defined short form for this

316 \protect\experiment.\MessageBreak

317 Please check that the abbreviation\MessageBreak

318 \csname short@exp@#1\endcsname\MessageBreak corresponds

319 properly to the long form \MessageBreak #2\MessageBreak}

320 \@startsection{experiment}{1}{\z@}%

321 {-3.5ex \@plus -1ex \@minus -.2ex}%

322 {2.3ex \@plus.2ex}%

323 {\raggedsection\normalfont\sectfont\nobreak\size@section\nobreak}%

324 [\@nameuse{short@exp@\fk@current@tocentry}]{#2}%

325 \fi%

326 \else%

The \fi is the end of the conditional regarding the mandatory argument,
when the (first element of the) optional argument was an abbreviation. The
\else case now means that the optional argument is a text, and we have to
check again the state of the mandatory argument:

327 \def\fk@currentarg{#2 }\@onelevel@sanitize{\fk@currentarg}%

328 \expandafter\fk@checkifabbrev@arg\fk@currentarg&{long@exp}%

329 \ifabbrev@defined%

19

This is the error case with a free optional and a predefined mandatory ar-
gument:

330 \ClassError {labbook} {Manual short form conflicts with

331 abbreviated title} {You have used an optional argument to

332 \protect\experiment\space (the first element in

333 square\MessageBreak brackets) that TeX does not

334 recognize as an abbreviation. However, in the

335 \MessageBreak experiment title (in the curly braces),

336 you have used an abbreviation defined\MessageBreak with

337 \protect\newexperiment. This doesn’t make sense, so

338 I don’t accept it.}%

339 \else%

This is the working case where optional and mandatory argument both are
free form:

340 \@startsection{experiment}{1}{\z@}%

341 {-3.5ex \@plus -1ex \@minus -.2ex}%

342 {2.3ex \@plus.2ex}%

343 {\raggedsection\normalfont\sectfont\nobreak\size@section\nobreak}%

344 [\fk@current@tocentry]{#2}%

345 \fi%

346 \fi%

347 }%

There is no starred form yet - we issue an error. We could as well \let it
to the unstarred form, but then old documents would change their appearance
once a starred form is introduced.

348 \def\@sexperiment#1{%

349 \ClassError{labbook}{%

350 Starred form of \protect\experiment\space not defined

351 }{%

352 There is no starred form of \protect\experiment\space defined

353 in this version of labbook.cls. Please use the unstarred form, or

354 check for a new version.

355 }

356 }

8.2 Defining \subexperiment
We define \subexperiment analogous to \experiment. In order to make
\fk@close@labindex work properly, we assign explevel and parselevel.

357 \def\subexperiment{%

358 \def\fk@explevel{subexp}%

359 \def\fk@parselevel{exp}%

360 \fk@close@labindex%

361 \lower@sectionlevelfalse%

362 \@ifstar{\@ssubexperiment}{\@subexperiment}%

363 }%

20

364 \def\@subexperiment{%

365 \@ifnextchar [{\opt@arg@subexperiment}{\nopt@arg@subexperiment}%]

366 }%

367 \def\nopt@arg@subexperiment#1{%

368 \def\fk@parselevel{exp}

369 \def\fk@currentarg{#1 }\@onelevel@sanitize{\fk@currentarg}%

370 \expandafter\fk@checkifabbrev@arg\fk@currentarg&{long@subexp}%

371 \ifabbrev@defined%

372 \fk@buildindexlist{\csname short@subexp@#1\endcsname}%

373 \@startsection{subexperiment}{2}{\z@}%

374 {-3.5ex \@plus -1ex \@minus -.2ex}%

375 {2.3ex \@plus.2ex}%

376 {\raggedsection\normalfont\sectfont\nobreak\size@section\nobreak}%

377 [\@nameuse{short@subexp@#1}]{\@nameuse{long@subexp@#1}}%

378 \else

379 \expandafter\fk@buildindexlist{#1}

380 \@startsection{subexperiment}{2}{\z@}%

381 {-3.5ex \@plus -1ex \@minus -.2ex}%

382 {2.3ex \@plus.2ex}%

383 {\raggedsection\normalfont\sectfont\nobreak\size@section\nobreak}%

384 {#1}%

385 \fi%

386 }%

For parsing the optional argument, we need parselevel subexp. After that,
\addcontentsline (which is implicitly called by \@startsection) needs parse-
level exp to properly set the index entries.

387 \def\opt@arg@subexperiment[#1]#2{%

388 \def\fk@parselevel{subexp}

389 \fk@parse@optarg#1,\relax,%

390 \def\fk@parselevel{exp}%

391 \ifabbrev@defined%

392 \def\fk@currentarg{#2 }\@onelevel@sanitize{\fk@currentarg}%

393 \expandafter\fk@checkifabbrev@arg\fk@currentarg&{long@exp}%

394 \ifabbrev@defined%

395 \expandafter\ifx\csname short@subexp@\fk@current@tocentry%

396 \expandafter\endcsname\csname short@subexp@#2\endcsname%

397 \@startsection{subexperiment}{2}{\z@}%

398 {-3.5ex \@plus -1ex \@minus -.2ex}%

399 {2.3ex \@plus.2ex}%

400 {\raggedsection\normalfont\sectfont\nobreak\size@section\nobreak}%

401 [\@nameuse{short@subexp@\fk@current@tocentry}]%

402 {\@nameuse{long@subexp@#2}}%

403 \else%

404 \ClassError

405 {labbook}

406 {index entry and subexperiment title don’t match}

407 {%

408 You have used \protect\subexperiment\space with an

409 optional argument, and used abbreviations\MessageBreak

21

410 both in the optional argument (in square brackets, for

411 the index and toc\MessageBreak entries) and the

412 mandatory argument (in curly braces, for the experiment

413 title in the text). This is only possible if both would

414 yield the same index/toc\MessageBreak entries. However,

415 you requested the index entry\MessageBreak

416 \@nameuse{short@subexp@#1}\MessageBreak

417 but the title corresponds to index entry\MessageBreak

418 \@nameuse{short@subexp@#2}}%

419 \fi%

420 \else%

421 \ClassWarning{labbook}

422 {Using a pre-defined short form for this

423 \protect\subexperiment.\MessageBreak

424 Please check that the abbreviation\MessageBreak \csname

425 short@subexp@#1\endcsname\MessageBreak corresponds

426 properly to the long form \MessageBreak #2\MessageBreak}%

427 \@startsection{subexperiment}{2}{\z@}%

428 {-3.5ex \@plus -1ex \@minus -.2ex}%

429 {2.3ex \@plus.2ex}%

430 {\raggedsection\normalfont\sectfont\nobreak\size@section\nobreak}%

431 [\@nameuse{short@subexp@\fk@current@tocentry}]{#2}%

432 \fi%

433 \else%

434 \def\fk@currentarg{#2 }\@onelevel@sanitize{\fk@currentarg}%

435 \expandafter\fk@checkifabbrev@arg\fk@currentarg&{long@subexp}%

436 \ifabbrev@defined%

437 \ClassError

438 {labbook}

439 {Manual short form conflicts with abbreviated title}

440 {You have used an optional argument to

441 \protect\subexperiment\space (the short form, in

442 \MessageBreak square brackets) that TeX does not

443 recognize as an abbreviation. However, \MessageBreak

444 in the subexperiment title (in the curly braces),

445 you have used an abbreviation\MessageBreak defined

446 with \protect\newsubexperiment. This doesn’t make

447 sense, so I don’t accept it.}%

448 \else%

449 \@startsection{subexperiment}{2}{\z@}%

450 {-3.5ex \@plus -1ex \@minus -.2ex}%

451 {2.3ex \@plus.2ex}%

452 {\raggedsection\normalfont\sectfont\nobreak\size@section\nobreak}%

453 [\fk@current@tocentry]{#2}%

454 \fi%

455 \fi%

456 }%

457 \def\@ssubexperiment#1{%

458 \ClassError{labbook}{%

459 Starred form of \protect\subexperiment\space not defined

22

460 }{%

461 There is no starred form of \protect\subexperiment\space defined

462 in this version of labbook.cls. Please use the unstarred form, or

463 check for a new version.

464 }%

465 }%

8.3 Defining labday

In mainmatter, \labday replaces chapter. (\chapter may still be used and will
get a toc entry, e.g. after \backmatter). \labday is an extended \addchap
(i.e. an un-numbered \chapter with toc entry and assignment of a running
headline) which additionally sets the closing index entry for the preceding
\(sub)experiment. After closing, \k@explevel is made undefined, so that
addcontentsline won’t try to open index ranges.

466 \newcommand*{\labday}{%

467 \def\fk@explevel{exp}%

468 \fk@close@labindex%

469 \let\fk@explevel\@undefined%

470 \refstepcounter{labday}%

471 \addchap%

472 }%

8.4 Adjusting the definition of part

If part is used, it must also call \fk@close@labindex.

473 \let\fk@part\part

474 \renewcommand*{\part}{%

475 \def\fk@explevel{exp}%

476 \fk@close@labindex%

477 \let\fk@explevel\@undefined%

478 \fk@part%

479 }

8.5 Adjusting subsubsection

If somebody uses lower sectioning levels than \subexperiment, the index lists
are not affected, and thus \addcontentslinewould again open the index entries
for the last \subexperiment. To avoid this, we extend \subsubsection; it now
sets the conditional \iflower@sectionlevel to true. This will be checked by
\addcontentsline.

480 \newif\iflower@sectionlevel

481 \let\fk@oldsubsubsection\subsubsection%

482 \renewcommand{\subsubsection}{%

483 \lower@sectionleveltrue%

484 \fk@oldsubsubsection%

485 }

23

8.6 Section numbering, floats and the table of contents

Since the days will not be numbered, we want to also change the numbering
scheme for the new sectioning commands:

486 \renewcommand*\theexperiment{\@arabic\c@experiment}%

487 \renewcommand*\thesubexperiment{%

488 \theexperiment.\@arabic\c@subexperiment}%

And for consistency also for the lower levels – nobody will ever need these
numbered, will one?

489 \renewcommand*\thesubsubsection{%

490 \thesubexperiment.\@arabic\c@subsection}%

491 \renewcommand*\theparagraph{%

492 \thesubsubsection.\@arabic\c@paragraph}%

493 \renewcommand*\thesubparagraph{%

494 \theparagraph.\@arabic\c@subparagraph}%

And the floats:

495 \@addtoreset{figure}{labday}%

496 \@addtoreset{table}{labday}%

497 \renewcommand*\thefigure{%

498 \@arabic\c@figure}%

499 \renewcommand*\thetable{%

500 \@arabic\c@table}%

To be able to print a table of contents, we have to define \contentsline
for labday, experiment and subexperiment. We just copy the definitions from
\chapter and \(sub)section:

501 \let\l@labday\l@chapter%

502 \let\l@experiment\l@section%

503 \let\l@subexperiment\l@subsection%

9 Building the index

9.1 Redefining addcontentsline

If \experiment or \subexperiment are called, then \addcontentsline is ex-
tended to open the index range entries (closing is done by \fk@close@labindex,
see above).

Redefining is only done here if we do not use hyperref.sty. If the hyperref
option has been specified, it is delayed until after this package has been loaded,
see section 10. What we do here in any case is define a macro that will do the
real defining of \addcontentsline.

504 % \begin{macrocode}

505 \def\define@addcontentsline{%

506 \let\fk@old@addcontentsline\addcontentsline%

507 \def\addcontentsline##1##2##3{%

24

First, we call all the old commands. After that, we apply the changes,
starting with a bunch of checks: First wether we are called from a sectioning
command (writing to toc), not by a caption of a figure or table; then wether
\fk@explevel is defined (i.e. wether we are not called by \part, \labday or a
traditional sectioning command outside mainmatter). And last wether we are
not called by subsubsection or lower.

508 \fk@old@addcontentsline{##1}{##2}{##3}%

509 \def\@tmpA{toc}%

510 \def\@tmpB{##1}%

511 \ifx\@tmpA\@tmpB%

512 \@ifundefined{fk@explevel}{}{%

513 \iflower@sectionlevel\else%

We define \fk@writeindex to open ranges and then call \fk@useindexlist
with the experiment’s indexlist – as explained above (see 7.1.3), this is also
correct for subexperiments.

514 \let\fk@writeindex\fk@openindex%

515 \expandafter\fk@useindexlist\fk@exp@indexlist\relax%

516 \fi%

517 }%

518 \fi%

519 }%

520 }%

Now let’s see wether hyperref.sty is used, according to the class option. If
no, we can redefine \addcontentsline right now:

521 %

522 \ifwe@use@hyperref\else%

523 \define@addcontentsline%

524 \fi%

9.2 Making sure the last index range is closed

Since closing of the index entries is usually done by the subsequent call of
\(sub)experiment, the last would never be closed. The closing has to be done
at the begin of the appendix if there is one, or at the end of mainmatter, if
\backmatter is called, or at last at the end of the document. The user should
still be able to call \appendix and \backmatter in arbitrary order, or not at
all. To decide at which place we close, we define a new conditional which is
initialized to be false. Then we define the command \fk@close@labindex to
close the index entries, if one is open (i.e. if \fk@current@(sub)expname is not
\relax). After closing, we \let the index names to \relax.

The \appendix command is extended to call \fk@close@labindex if the
conditional is still false, so is \backmatter. Additionally, after closing the
index entries \fk@explevel is made undefined, so that subsequent calls of
\addcontentsline don’t even try to use the (albeit empty) index lists.

525 \newif\iflast@labindex@closed\last@labindex@closedfalse%

25

526 \let\fk@old@appendix\appendix%

527 \def\appendix{%

528 \iflast@labindex@closed\else%

529 \def\fk@explevel{exp}%

530 \fk@close@labindex%

531 \last@labindex@closedtrue%

532 \let\fk@explevel\@undefined%

533 \setcounter{footnote}{0}%

534 \fi%

535 \fk@old@appendix%

536 }%

537 \let\fk@old@backmatter\backmatter%

538 \def\backmatter{%

539 \iflast@labindex@closed\else%

540 \def\fk@explevel{exp}%

541 \fk@close@labindex%

542 \last@labindex@closedtrue%

543 \let\fk@explevel\@undefined

544 \setcounter{footnote}{0}%

545 \fi%

546 \fk@old@backmatter%

547 }

And as a last resort, \AtEndDocument will do it.

548 \AtEndDocument{%

549 \iflast@labindex@closed\else%

550 \def\fk@explevel{exp}%

551 \fk@close@labindex%

552 \fi%

553 }

10 hyperref compatibility macros

First we redefine \addcontentsline which was delayed, the definition is ex-
plained above (see 9.1)

554 \ifwe@use@hyperref

555 \AfterPackage{hyperref}{%

556 \define@addcontentsline%

557 \providecommand*{\toclevel@labday}{0}%

558 \providecommand*{\toclevel@experiment}{1}%

559 \providecommand*{\toclevel@subexperiment}{2}%

560 \newcommand*\theHlabday{%

561 \arabic{labday}}%

562 \newcommand*\theHexperiment{%

563 \theHlabday.\arabic{experiment}}%

564 \newcommand*\theHsubexperiment{%

565 \theHexperiment.\arabic{subexperiment}}%

566 \renewcommand*\theHsubsubsection{%

26

567 \theHsubexperiment.\arabic{subsubsection}}%

568 \renewcommand*\theHfigure{%

569 \theHlabday.\arabic{figure}}%

570 \renewcommand*\theHtable{%

571 \theHlabday.\arabic{table}}%

572 \newcommand*\theHsubfigure{%

573 \theHfigure.\arabic{subfigure}}

574 }%

575 \AtBeginDocument{%

576 \@ifpackageloaded{hyperref}{}{%

577 \ClassError{labbook}{%

578 hyperref option given, but package not loaded}{%

579 You have specified the class option hyperref, but

580 not loaded the package until \protect\begin{document}.

581 }

582 }

583 }

584 \else

585 \AtBeginDocument{%

586 \@ifpackageloaded{hyperref}{%

587 \ClassError{labbook}{%

588 hyperref option not given, but package loaded}{%

589 You have not specified the class option hyperref,

590 but loaded the package. Don’t do that again!

591 }%

592 }{}%

593 }%

594 \fi%

595 〈/labbook〉

27

